Integrative transcriptome and metabolome analysis reveals the mechanism of fulvic acid alleviating drought stress in oat

被引:1
|
作者
Zhu, Shanshan [1 ,2 ]
Mi, Junzhen [1 ,2 ,3 ]
Zhao, Baoping [1 ,2 ,3 ]
Wang, Zhaoming [4 ]
Yang, Zhixue [1 ,2 ]
Wang, Mengxin [1 ,2 ]
Liu, Jinghui [1 ,2 ,3 ]
机构
[1] Inner Mongolia Agr Univ, Coarse Cereals Ind Collaborat Innovat Ctr, Hohhot, Peoples R China
[2] Inner Mongolia Grassland Talents Innovat Team, Natl Agr Sci Res Outstanding Talents & Their Innov, Hohhot, Peoples R China
[3] Inner Mongolia Agr Univ, Oat Engn Res Ctr, Oat Engn Lab Inner Mongolia Autonomous Reg, Hohhot, Peoples R China
[4] M Grass Ecol & Environm Grp Co Ltd, Natl Ctr Pratacultural Technol Innovat Under Way, Hohhot, Peoples R China
来源
关键词
oat; drought stress; fulvic acid; phenylpropanoid biosynthesis; glutathione metabolism; GLUCOSE-6-PHOSPHATE-DEHYDROGENASE; INDUCTION; PLANTS;
D O I
10.3389/fpls.2024.1439747
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress inhibits oat growth and yield. The application of fulvic acid (FA) can improve the drought resistance of oats, but the corresponding molecular mechanism of FA-mediated drought resistance remains unclear. Here, we studied the effects of FA on the drought tolerance of oat leaves through physiological, transcriptomic, and metabolomics analyses, and identified FA-induced genes and metabolites related to drought tolerance. Physiological analysis showed that under drought stress, FA increased the relative water and chlorophyll contents of oat leaves, enhanced the activity of antioxidant enzymes (SOD, POD, PAL, CAT and 4CL), inhibited the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and dehydroascorbic acid (DHA), reduced the degree of oxidative damage in oat leaves, improved the drought resistance of oats, and promoted the growth of oat plants. Transcriptome and metabolite analyses revealed 652 differentially expressed genes (DEGs) and 571 differentially expressed metabolites (DEMs) in FA-treated oat leaves under drought stress. These DEGs and DEMs are involved in a variety of biological processes, such as phenylspropanoid biosynthesis and glutathione metabolism pathways. Additionally, FA may be involved in regulating the role of DEGs and DEMs in phenylpropanoid biosynthesis and glutathione metabolism under drought stress. In conclusion, our results suggest that FA promotes oat growth under drought stress by attenuating membrane lipid peroxidation and regulating the antioxidant system, phenylpropanoid biosynthesis, and glutathione metabolism pathways in oat leaves. This study provides new insights into the complex mechanisms by which FA improves drought tolerance in crops.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots
    Wang, Yifan
    Wang, Jiarui
    Guo, Haoxue
    Wu, Xi
    Hao, Miaoyi
    Zhang, Renhe
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 199
  • [2] Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet
    Cao, Xiaoning
    Hu, Yulu
    Song, Jian
    Feng, Hui
    Wang, Junjie
    Chen, Ling
    Wang, Lun
    Diao, Xianmin
    Wan, Yan
    Liu, Sichen
    Qiao, Zhijun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [3] Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit
    Su, Ziwen
    Jia, Haoran
    Sun, Meng
    Cai, Zhixiang
    Shen, Zhijun
    Zhao, Bintao
    Li, Jiyao
    Ma, Ruijuan
    Yu, Mingliang
    Yan, Juan
    FRONTIERS IN NUTRITION, 2022, 9
  • [4] Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.)
    Xu, Zhongshan
    Chen, Xiaojing
    Lu, Xiaoping
    Zhao, Baoping
    Yang, Yanming
    Liu, Jinghui
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 315 - 328
  • [5] Integrative analysis of the metabolome and transcriptome reveals the mechanism of polyphenol biosynthesis in Taraxacum mongolicum
    Zhao, Xing
    Li, Yiguo
    Huang, Yuanchong
    Shen, Jun
    Xu, Huini
    Li, Kunzhi
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [6] Integrative Analysis of the Transcriptome and Metabolome Reveals the Mechanism of Chinese Fir Seed Germination
    Chen, Xiangteng
    Zhao, Guangyu
    Li, Yanglong
    Wei, Shumeng
    Dong, Yuhong
    Jiao, Ruzhen
    FORESTS, 2023, 14 (04):
  • [7] Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus
    Junheng Lv
    Minghua Deng
    Zuosen Li
    Haishan Zhu
    Ziran Wang
    Yanling Yue
    Zhengan Yang
    Junqiang Xu
    Shurui Jiang
    Wei Zhao
    Jing Li
    Kai Zhao
    HorticulturalPlantJournal, 2023, 9 (05) : 958 - 970
  • [8] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit
    Gan, Sichen
    Zheng, Gang
    Zhu, Shoukuo
    Qian, Jieyu
    Liang, Lijun
    METABOLITES, 2022, 12 (02)
  • [9] Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus
    Lv, Junheng
    Deng, Minghua
    Li, Zuosen
    Zhu, Haishan
    Wang, Ziran
    Yue, Yanling
    Yang, Zhengan
    Xu, Junqiang
    Jiang, Shurui
    Zhao, Wei
    Li, Jing
    Zhao, Kai
    HORTICULTURAL PLANT JOURNAL, 2023, 9 (05) : 958 - 970
  • [10] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Flavonoid Biosynthesis in Lithocarpus polystachyus Rehd
    Zhang, Duoduo
    Wang, Shuqing
    Lin, Limei
    Zhang, Jie
    Cui, Minghui
    Wang, Shuo
    Zhao, Xuelei
    Dong, Jing
    Long, Yuehong
    Xing, Zhaobin
    ACS OMEGA, 2022, 7 (23): : 19437 - 19453