Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit

被引:11
|
作者
Su, Ziwen [1 ,2 ]
Jia, Haoran [2 ,3 ]
Sun, Meng [1 ]
Cai, Zhixiang [1 ]
Shen, Zhijun [1 ]
Zhao, Bintao [1 ,2 ]
Li, Jiyao [1 ,2 ]
Ma, Ruijuan [1 ]
Yu, Mingliang [1 ,2 ]
Yan, Juan [1 ]
机构
[1] Jiangsu Acad Agr Sci, Inst Pomol, Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing, Peoples R China
[2] Nanjing Agr Univ, Coll Hort, Nanjing, Peoples R China
[3] Zhejiang Univ, Coll Agr & Biotechnol, Hangzhou, Peoples R China
来源
FRONTIERS IN NUTRITION | 2022年 / 9卷
关键词
peach; chlorogenic acid; metabolome; transcriptome; candidate genes; EXPRESSION; PATHWAY; GENE; BIOSYNTHESIS; SHIKIMATE; COENZYME; CLONING;
D O I
10.3389/fnut.2022.961626
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
As the most abundant phenolic acid in peach fruit, chlorogenic acid (CGA) is an important entry point for the development of natural dietary supplements and functional foods. However, the metabolic and regulation mechanisms underlying its accumulation in peach fruits remain unclear. In this study, we evaluated the composition and content of CGAs in mature fruits of 205 peach cultivars. In peach fruits, three forms of CGA (52.57%), neochlorogenic acid (NCGA, 47.13%), and cryptochlorogenic acid (CCGA, 0.30%) were identified. During the growth and development of peach fruits, the content of CGAs generally showed a trend of rising first and then decreasing. Notably, the contents of quinic acid, shikimic acid, p-coumaroyl quinic acid, and caffeoyl shikimic acid all showed similar dynamic patterns to that of CGA, which might provide the precursor material basis for the accumulation of CGA in the later stage. Moreover, CGA, lignin, and anthocyanins might have a certain correlation and these compounds work together to maintain a dynamic balance. By the comparative transcriptome analysis, 8 structural genes (Pp4CL, PpCYP98A, and PpHCT) and 15 regulatory genes (PpMYB, PpWRKY, PpERF, PpbHLH, and PpWD40) were initially screened as candidate genes of CGA biosynthesis. Our findings preliminarily analyzed the metabolic and molecular regulation mechanisms of CGA biosynthesis in peach fruit, which provided a theoretical basis for developing high-CGA content peaches in future breeding programs.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus
    Junheng Lv
    Minghua Deng
    Zuosen Li
    Haishan Zhu
    Ziran Wang
    Yanling Yue
    Zhengan Yang
    Junqiang Xu
    Shurui Jiang
    Wei Zhao
    Jing Li
    Kai Zhao
    [J]. Horticultural Plant Journal, 2023, 9 (05) : 958 - 970
  • [12] Integrative analysis of the transcriptome and metabolome reveals the response mechanism to tomato spotted wilt virus
    Lv, Junheng
    Deng, Minghua
    Li, Zuosen
    Zhu, Haishan
    Wang, Ziran
    Yue, Yanling
    Yang, Zhengan
    Xu, Junqiang
    Jiang, Shurui
    Zhao, Wei
    Li, Jing
    Zhao, Kai
    [J]. HORTICULTURAL PLANT JOURNAL, 2023, 9 (05) : 958 - 970
  • [13] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Flavonoid Biosynthesis in Lithocarpus polystachyus Rehd
    Zhang, Duoduo
    Wang, Shuqing
    Lin, Limei
    Zhang, Jie
    Cui, Minghui
    Wang, Shuo
    Zhao, Xuelei
    Dong, Jing
    Long, Yuehong
    Xing, Zhaobin
    [J]. ACS OMEGA, 2022, 7 (23): : 19437 - 19453
  • [14] An Integrative Analysis of Metabolome and Transcriptome Reveals the Molecular Regulatory Mechanism of the Accumulation of Flavonoid Glycosides in Different Cyclocarya paliurus Ploidies
    Yu, Yanhao
    Qu, Yinquan
    Wang, Shuyang
    Wang, Qian
    Shang, Xulan
    Fu, Xiangxiang
    [J]. FORESTS, 2023, 14 (04):
  • [15] Integrative analysis of metabolome and transcriptome reveals molecular regulatory mechanism of flavonoid biosynthesis in Cyclocarya paliurus under salt stress
    Zhang, Lei
    Zhang, Zijie
    Fang, Shengzuo
    Liu, Yang
    Shang, Xulan
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2021, 170
  • [16] Transcriptome Sequencing and Metabolome Analysis Reveals the Molecular Mechanism of Drought Stress in Millet
    Cao, Xiaoning
    Hu, Yulu
    Song, Jian
    Feng, Hui
    Wang, Junjie
    Chen, Ling
    Wang, Lun
    Diao, Xianmin
    Wan, Yan
    Liu, Sichen
    Qiao, Zhijun
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [17] Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in white root (Salvia miltiorrhiza)
    Su, Yuekai
    Zhang, Jin
    Xu, Zhichao
    Li, Jingyu
    Wang, Pengfei
    Song, Zhenqiao
    Tian, Guoqing
    Li, Lei
    Song, Jingyuan
    Wang, Jianhua
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2021, 170
  • [18] Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.
    FU Fang-fang
    PENG Ying-shu
    WANG Gui-bin
    Yousry A.EL-KASSABY
    CAO Fu-liang
    [J]. Journal of Integrative Agriculture, 2021, 20 (01) : 132 - 146
  • [19] Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.
    Fu Fang-fang
    Peng Ying-shu
    Wang Gui-bin
    El-Kassaby, Yousry A.
    Cao Fu-liang
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (01) : 132 - 146
  • [20] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Yellow-Fleshed Kiwifruit
    Xiong, Yun
    He, Junya
    Li, Mingzhang
    Du, Kui
    Lang, Hangyu
    Gao, Ping
    Xie, Yue
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)