MatOpt: A Python']Python Package for Nanomaterials Design Using Discrete Optimization

被引:1
|
作者
Hanselman, Christopher L. [1 ]
Yin, Xiangyu [1 ]
Miller, David C. [2 ]
Gounaris, Chrysanthos E. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
关键词
MACHINE; IDENTIFICATION; DISCOVERY; FRAMEWORK;
D O I
10.1021/acs.jcim.1c00984
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Novel materials are being enabled by advances in synthesis techniques that achieve ever better control over the atomic-scale structure of materials. The pace of materials development has been further increased by high-throughput computational experiments guided by informatics and machine learning. We have previously demonstrated complementary approaches using mathematical optimization models to search through highly combinatorial design spaces of atomic arrangements, guiding the design of nanostructured materials. In this paper, we highlight the common features of materials optimization problems that can be efficiently modeled via mixed-integer linear optimization models. To take advantage of these commonalities, we have created MatOpt, a Python package that formalizes the process of representing the design space and formulating optimization models for the on-demand design of nanostructured materials. This tool serves to bridge the gap between practitioners with expertise in materials science and those with expertise in formulating and solving mathematical optimization models, effectively lowering the barriers for applying rigorous numerical optimization capabilities during nanostructured materials development.
引用
收藏
页码:295 / 308
页数:14
相关论文
共 50 条
  • [21] A Python']Python package for particle physics analyses
    Bevan, Adrian
    Charman, Thomas
    Hays, Jonathan
    23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [22] tension: A Python']Python package for FORCE learning
    Liu, Lu Bin
    Losonczy, Attila
    Liao, Zhenrui
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
  • [23] danRerLib: a Python']Python package for zebrafish transcriptomics
    Schwartz, Ashley, V
    Sant, Karilyn E.
    George, Uduak Z.
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [24] MGtoolkit: A python']python package for implementing metagraphs
    Ranathunga, D.
    Nguyen, H.
    Roughan, M.
    SOFTWAREX, 2017, 6 : 91 - 93
  • [25] litstudy: A Python']Python package for literature reviews
    Heldens, Stijn
    Sclocco, Alessio
    Dreuning, Henk
    van Werkhoven, Ben
    Hijma, Pieter
    Maassen, Jason
    van Nieuwpoort, Rob V.
    SOFTWAREX, 2022, 20
  • [26] MeDIL: A Python']Python Package for Causal Modelling
    Markham, Alex
    Chivukula, Aditya
    Grosse-Wentrup, Moritz
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 621 - 624
  • [27] Astropy: A community Python']Python package for astronomy
    Robitaille, Thomas P.
    Tollerud, Erik J.
    Greenfield, Perry
    Droettboom, Michael
    Bray, Erik
    Aldcroft, Tom
    Davis, Matt
    Ginsburg, Adam
    Price-Whelan, Adrian M.
    Kerzendorf, Wolfgang E.
    Conley, Alexander
    Crighton, Neil
    Barbary, Kyle
    Muna, Demitri
    Ferguson, Henry
    Grollier, Frederic
    Parikh, Madhura M.
    Nair, Prasanth H.
    Guenther, Hans M.
    Deil, Christoph
    Woillez, Julien
    Conseil, Simon
    Kramer, Roban
    Turner, James E. H.
    Singer, Leo
    Fox, Ryan
    Weaver, Benjamin A.
    Zabalza, Victor
    Edwards, Zachary I.
    Bostroem, K. Azalee
    Burke, D. J.
    Casey, Andrew R.
    Crawford, Steven M.
    Dencheva, Nadia
    Ely, Justin
    Jenness, Tim
    Labrie, Kathleen
    Lim, Pey Lian
    Pierfederici, Francesco
    Pontzen, Andrew
    Ptak, Andy
    Refsdal, Brian
    Servillat, Mathieu
    Streicher, Ole
    ASTRONOMY & ASTROPHYSICS, 2013, 558
  • [28] celmech: A Python']Python Package for Celestial Mechanics
    Hadden, Sam
    Tamayo, Daniel
    ASTRONOMICAL JOURNAL, 2022, 164 (05):
  • [29] PYCHEM: a multivariate analysis package for python']python
    Jarvis, Roger M.
    Broadhurst, David
    Johnson, Helen
    O'Boyle, Noel M.
    Goodacre, Royston
    BIOINFORMATICS, 2006, 22 (20) : 2565 - 2566
  • [30] scqubits: a Python']Python package for superconducting qubits
    Groszkowski, Peter
    Koch, Jens
    QUANTUM, 2021, 5