Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected

被引:116
|
作者
Wouchuk, JG [1 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.056303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the interface. The growth rate comes out as the solution of a system of two coupled functional equations and is expressed formally as an infinite series. The distinguishing feature of the procedure shown here is the high speed of convergence of the intermediate calculations. There is excellent agreement with previous linear simulations and experiments done in shock tubes.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Richtmyer-Meshkov instability of a sinusoidal interface driven by a cylindrical shock
    Liu, L.
    Ding, J.
    Zhai, Z.
    Luo, X.
    SHOCK WAVES, 2019, 29 (02) : 263 - 271
  • [42] Nonlinear analytic growth rate of a single-mode Richtmyer-Meshkov instability
    Vandenboomgaerde, M
    LASER AND PARTICLE BEAMS, 2003, 21 (03) : 317 - 319
  • [43] Modeling and verification of the Richtmyer-Meshkov instability linear growth rate of the dense gas-particle flow
    Meng, Baoqing
    Zeng, Junsheng
    Tian, Baolin
    Li, Li
    He, Zhiwei
    Guo, Xiaohu
    PHYSICS OF FLUIDS, 2019, 31 (07)
  • [44] On the problem of the Richtmyer-Meshkov instability suppression
    Aleshin, AN
    Lazareva, EV
    Sergeev, SV
    Zaitsev, SG
    DOKLADY AKADEMII NAUK, 1998, 363 (02) : 178 - 180
  • [45] RICHTMYER-MESHKOV INSTABILITY IN THE TURBULENT REGIME
    DIMONTE, G
    FRERKING, CE
    SCHNEIDER, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (24) : 4855 - 4858
  • [46] QUANTITATIVE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    GROVE, JW
    HOLMES, R
    SHARP, DH
    YANG, Y
    ZHANG, Q
    PHYSICAL REVIEW LETTERS, 1993, 71 (21) : 3473 - 3476
  • [47] Richtmyer-Meshkov instability of arbitrary shapes
    Mikaelian, KO
    PHYSICS OF FLUIDS, 2005, 17 (03) : 034101 - 1
  • [48] Richtmyer-Meshkov instability with a rippled reshock
    Zhang, Yumeng
    Zhao, Yong
    Ding, Juchun
    Luo, Xisheng
    JOURNAL OF FLUID MECHANICS, 2023, 968
  • [49] Nonlinear evolution of the Richtmyer-Meshkov instability
    Herrmann, Marcus
    Moin, Parviz
    Abarzhi, Snezhana I.
    JOURNAL OF FLUID MECHANICS, 2008, 612 (311-338) : 311 - 338
  • [50] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244