Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected

被引:116
|
作者
Wouchuk, JG [1 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.056303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the interface. The growth rate comes out as the solution of a system of two coupled functional equations and is expressed formally as an infinite series. The distinguishing feature of the procedure shown here is the high speed of convergence of the intermediate calculations. There is excellent agreement with previous linear simulations and experiments done in shock tubes.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Attenuation of Richtmyer-Meshkov instability growth of fluid layer via double shock
    Chen, Chenren
    Li, Jiaxuan
    Wang, He
    Zhai, Zhigang
    Luo, Xisheng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2025, 68 (04)
  • [32] Modeling the amplitude growth of Richtmyer-Meshkov instability in shock-flame interactions
    Al-Thehabey, Omar Yousef
    PHYSICS OF FLUIDS, 2020, 32 (10)
  • [33] Richtmyer-Meshkov instability: theory of linear and nonlinear evolution
    Nishihara, K.
    Wouchuk, J. G.
    Matsuoka, C.
    Ishizaki, R.
    Zhakhovsky, V. V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1916): : 1769 - 1807
  • [34] Attenuation of Richtmyer-Meshkov instability growth of fluid layer via double shock
    Chenren Chen
    Jiaxuan Li
    He Wang
    Zhigang Zhai
    Xisheng Luo
    Science China(Physics,Mechanics & Astronomy), 2025, (04) : 148 - 155
  • [35] Analytic theory of Richtmyer-Meshkov instability for the case of reflected rarefaction wave
    Velikovich, AL
    PHYSICS OF FLUIDS, 1996, 8 (06) : 1666 - 1679
  • [36] Richtmyer-Meshkov instability growth: experiment, simulation and theory
    Holmes, RL
    Dimonte, G
    Fryxell, B
    Gittings, ML
    Grove, JW
    Schneider, M
    Sharp, DH
    Velikovich, AL
    Weaver, RP
    Zhang, Q
    JOURNAL OF FLUID MECHANICS, 1999, 389 : 55 - 79
  • [37] Richtmyer-Meshkov instability growth: Experiment, simulation and theory
    Holmes, Richard L.
    Dimonte, Guy
    Fryxell, Bruce
    Gittings, Michael L.
    Grove, John W.
    Schneider, Marilyn
    Sharp, David H.
    Velikovich, Alexander L.
    Weaver, Robert P.
    Zhang, Qiang
    Journal of Fluid Mechanics, 1999, 389 : 55 - 79
  • [38] Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability
    Mikaelian, Karnig O.
    PHYSICAL REVIEW FLUIDS, 2016, 1 (03):
  • [39] Analytic theory of Richtmyer-Meshkov instability for the case of reflected rarefraction wave
    Velikovich, Alexander L.
    Physics of Fluids, 1996, 8 (06):
  • [40] Divergent Richtmyer-Meshkov instability under different shock strengths
    Ding, Juchun
    Zhang, Duo
    Luo, Xisheng
    JOURNAL OF FLUID MECHANICS, 2024, 987