Attention-based Selection Strategy for Weakly Supervised Object Localization

被引:5
|
作者
Zhang, Zhenfei [1 ]
Bui, Tien D. [1 ]
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ, Canada
关键词
weakly supervised object localization; attention-based selection strategy;
D O I
10.1109/ICPR48806.2021.9412173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly Supervised Object Localization (WSOL) task aims to recognize the object position by using only image-level labels. Some previous techniques remove the most discriminative parts for all input images or random images to capture the entire object location. However, these methods can not perform the correct operation on different images such as hiding the data or feature maps that should not be hidden. In this case, both classification and localization accuracy will be affected. Meanwhile, just erasing the most important regions tends to make the model learn the less discriminative parts from outside of the objects. To address these limitations, we propose an Attention-based Selection Strategy (ASS) method to choose images that do need to be erased. Moreover, we use different threshold self-attention maps to reduce the impact of unhelpful information in one of the branches of our selection strategy. Based on our experiments, the proposed method is simple but effective to improve the performance of WSOL. In particular, ASS achieves new state-of-the-art accuracy on CUB-200-2011 dataset and works very well on ILSVRC 2016 dataset.
引用
收藏
页码:10305 / 10311
页数:7
相关论文
共 50 条
  • [1] Attention-based Dropout Layer for Weakly Supervised Object Localization
    Choe, Junsuk
    Shim, Hyunjung
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2214 - 2223
  • [2] Attention-Based Dropout Layer for Weakly Supervised Single Object Localization and Semantic Segmentation
    Choe, Junsuk
    Lee, Seungho
    Shim, Hyunjung
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4256 - 4271
  • [3] Weakly Supervised Learning for Object Localization Based on an Attention Mechanism
    Park, Nojin
    Ko, Hanseok
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [4] Weakly Supervised Object Localization Based on Attention Mechanism and Categorical Hierarchy
    Feng X.
    Yang J.
    Zhou T.
    Gong C.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10): : 4916 - 4929
  • [5] Adaptive attention augmentor for weakly supervised object localization
    Zhang, Longhao
    Yang, Huihua
    NEUROCOMPUTING, 2021, 454 : 474 - 482
  • [6] Aggregation of attention and erasing for weakly supervised object localization
    Koo, Bongyeong
    Choi, Han-Soo
    Kang, Myungjoo
    IMAGE AND VISION COMPUTING, 2023, 129
  • [7] Rethinking erasing strategy on weakly supervised object localization
    Fan, Yuming
    Wei, Shikui
    Tan, Chuangchuang
    Chen, Xiaotong
    Yang, Dongming
    Zhao, Yao
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 135
  • [8] Module of Axis-based Nexus Attention for weakly supervised object localization
    Sohn, Junghyo
    Jeon, Eunjin
    Jung, Wonsik
    Kang, Eunsong
    Suk, Heung-Il
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Region-based dropout with attention prior for weakly supervised object localization
    Choe, Junsuk
    Han, Dongyoon
    Yun, Sangdoo
    Ha, Jung-Woo
    Oh, Seong Joon
    Shim, Hyunjung
    PATTERN RECOGNITION, 2021, 116
  • [10] Module of Axis-based Nexus Attention for weakly supervised object localization
    Junghyo Sohn
    Eunjin Jeon
    Wonsik Jung
    Eunsong Kang
    Heung-Il Suk
    Scientific Reports, 13