Field-induced interband tunneling effect transistor (FITET) with negative-differential transconductance and negative-differential conductance

被引:14
|
作者
Kim, KR [1 ]
Kim, HH
Song, KW
Huh, JI
Lee, JD
Park, BG
机构
[1] Seoul Natl Univ, Inter Univ Semicond Res Ctr, Seoul 151600, South Korea
[2] Seoul Natl Univ, Sch Elect Engn, Seoul 151600, South Korea
关键词
CMOS; degenerate; field-induced interband tunneling effect (FITET); interband; negative-differential conductance (NDC); negative-differential transconductance (NDT); quantum-tunneling; silicon-on-insulator (SOI);
D O I
10.1109/TNANO.2005.847008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fabricated quantum-tunneling devices have a structure totally compatible with silicon-on-insulator CMOS device except for degenerate channel doping and the intentional omission of lightly doped drain (LDD) region. The key principle of the device operation is the field-induced interband tunneling effect, and thus the name of this quantum-tunneling device: FITET. In the transfer I-V characteristics of FITET, negative-differential transconductance (NDT) characteristics have been observed at room temperature. By controlling the critical device parameters to enhance field-effect such as gate oxide thickness, the peak-to-valley current ratio over 5 has been obtained at room temperature, and the negative-differential conductance (NDC) characteristics as well as NDT have been observed in the output I-V curves of the same FITET.
引用
收藏
页码:317 / 321
页数:5
相关论文
共 50 条
  • [21] Observation of negative differential transconductance in tunneling emitter bipolar transistors
    van Veenhuizen, Marc J.
    Locatelli, Nicolas
    Moodera, Jagadeesh
    Chang, Joonyeon
    APPLIED PHYSICS LETTERS, 2009, 95 (07)
  • [22] Image charge effects in single-molecule junctions: Breaking of symmetries and negative-differential resistance in a benzene single-electron transistor
    Kaasbjerg, K.
    Flensberg, K.
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [23] SCATTERING-CONTROLLED TRANSMISSION RESONANCES AND NEGATIVE DIFFERENTIAL CONDUCTANCE BY FIELD-INDUCED LOCALIZATION IN SUPERLATTICES
    BELTRAM, F
    CAPASSO, F
    SIVCO, DL
    HUTCHINSON, AL
    CHU, SNG
    CHO, AY
    PHYSICAL REVIEW LETTERS, 1990, 64 (26) : 3167 - 3170
  • [24] NEGATIVE DIFFERENTIAL RESISTANCE DUE TO RESONANT INTERBAND TUNNELING OF HOLES
    CHOW, DH
    YU, ET
    SODERSTROM, JR
    TING, DZY
    MCGILL, TC
    JOURNAL OF APPLIED PHYSICS, 1990, 68 (07) : 3744 - 3746
  • [25] NEGATIVE DIFFERENTIAL RESISTANCE OF SINGLE BARRIER INTERBAND TUNNELING DIODES
    KHRENOV, G
    RYZHII, V
    ZHAKHAROVA, A
    SOLID-STATE ELECTRONICS, 1993, 36 (09) : 1325 - 1333
  • [26] Resonant tunneling and multiple negative differential conductance features in long wavelength interband cascade infrared photodetectors
    Lei, Lin
    Li, Lu
    Huang, Wenxiang
    Massengale, Jeremy A.
    Ye, Hao
    Lotfi, Hossein
    Yang, Rui Q.
    Mishima, Tetsuya D.
    Santos, Michael B.
    Johnson, Matthew B.
    APPLIED PHYSICS LETTERS, 2017, 111 (11)
  • [27] Radiative Thermal Runaway Due to Negative-Differential Thermal Emission Across a Solid-Solid Phase Transition
    Bierman, David M.
    Lenert, Andrej
    Kats, Mikhail A.
    Zhou, You
    Zhang, Shuyan
    De La Ossa, Matthew
    Ramanathan, Shriram
    Capasso, Federico
    Wang, Evelyn N.
    PHYSICAL REVIEW APPLIED, 2018, 10 (02):
  • [28] RESONANT-TUNNELING FIELD-EFFECT TRANSISTOR: A NEW NEGATIVE TRANSCONDUCTANCE DEVICE.
    Sen, Susanta
    Capasso, Federico
    Beltram, Fabio
    Cho, Alfred Y.
    IEEE Transactions on Electron Devices, 1987, ED-34 (08) : 1768 - 1773
  • [29] A new multi-valued current-mode adder based on negative-differential resistance using ULP diodes
    Hassoune, H
    Drummond, A
    Gaudissart, A
    Bol, D
    Levacq, D
    Flandre, D
    Legat, JD
    SOLID-STATE ELECTRONICS, 2005, 49 (07) : 1185 - 1191
  • [30] Numerical band-to-band tunnelling model for radio-frequency silicon tunnel diode with negative-differential resistance
    Kim, K. R.
    Park, B. -G.
    Dutton, R. W.
    ELECTRONICS LETTERS, 2008, 44 (23) : 1379 - +