Radiative Thermal Runaway Due to Negative-Differential Thermal Emission Across a Solid-Solid Phase Transition

被引:19
|
作者
Bierman, David M. [1 ]
Lenert, Andrej [2 ]
Kats, Mikhail A. [3 ]
Zhou, You [5 ]
Zhang, Shuyan [4 ]
De La Ossa, Matthew [1 ]
Ramanathan, Shriram [6 ]
Capasso, Federico [4 ]
Wang, Evelyn N. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[3] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02139 USA
[5] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[6] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
来源
PHYSICAL REVIEW APPLIED | 2018年 / 10卷 / 02期
关键词
THIN-FILMS; SEMICONDUCTOR-DEVICES; VANADIUM DIOXIDE; VO2; INTERFERENCE; SPECTROSCOPY; RECTIFIER;
D O I
10.1103/PhysRevApplied.10.021001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermal runaway occurs when a rise in system temperature results in heat-generation rates exceeding dissipation rates. Here, we demonstrate that thermal runaway occurs in radiative (photon) systems given a sufficient level of negative-differential thermal emission. By exploiting the insulator-to-metal phase transition of vanadium dioxide, we show that a small increase in heat generation (e.g., 10 nW/mm(2)) results in a large change in surface temperature (e.g., similar to 35 K), as the thermal emitter switches from high emittance to low emittance. While thermal runaway is typically associated with catastrophic failure mechanisms, detailed understanding and control of this phenomenon may give rise to new opportunities in infrared sensing, camouflage, and rectification.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] MULTISCALE THERMAL TRANSPORT ACROSS SOLID-SOLID INTERFACES
    Balasubramanian, Ganesh
    Kappiyoor, Ravi
    Puri, Ishwar K.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 4, 2012, : 209 - 213
  • [2] Solid state NMR study of solid-solid phase transition in high density polyethylene due to thermal/mechanical treatment
    Han, OC
    Chae, SA
    Han, SG
    Woo, SK
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 1996, 17 (11) : 1074 - 1077
  • [3] THERMAL SOLID-SOLID PHASE-TRANSITION OF SOME METAL OXALATO COMPLEXES
    NAGASE, K
    CHEMISTRY LETTERS, 1972, (07) : 587 - +
  • [4] SOLID-SOLID TRANSITION IN HEXAMETHYLBENZENE THAT DEPENDS ON THERMAL HISTORY
    YOSHIMOTO, Y
    FUJIWARA, T
    ATAKE, T
    CHIHARA, H
    CHEMISTRY LETTERS, 1985, (09) : 1347 - 1350
  • [5] Thermal transport across symmetric and asymmetric solid-solid interfaces
    Bi, Kedong
    Liu, Yadong
    Zhang, Chunwei
    Li, Jiapeng
    Chen, Minhua
    Chen, Yunfei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (10):
  • [6] The importance of anharmonicity in thermal transport across solid-solid interfaces
    Wu, Xufei
    Luo, Tengfei
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (01)
  • [7] Studies and applications of polymer solid-solid phase transition materials for thermal energy storage
    Chemistry Department, Research Institute of Polymeric Materials, Xiangtan University, Xiangtan 411105, China
    Hecheng Shuzhi Ji Suliao, 2006, 2 (77-80):
  • [8] Effect of light atoms on thermal transport across solid-solid interfaces
    Li, Ruiyang
    Gordiz, Kiarash
    Henry, Asegun
    Hopkins, Patrick E.
    Lee, Eungkyu
    Luo, Tengfei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (31) : 17029 - 17035
  • [9] Thermal Conductivity Enhancement of Solid-Solid Phase-Change Materials for Thermal Storage
    Son, C. H.
    Morehouse, J. H.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1991, 5 (01) : 122 - 124
  • [10] Molecular simulations of thermal transport across interfaces: solid-vapour and solid-solid
    Murad, Sohail
    Puri, Ishwar K.
    MOLECULAR SIMULATION, 2012, 38 (8-9) : 642 - 652