Limit theorems for the left random walk on GLd(R)

被引:14
|
作者
Cuny, Christophe [1 ]
Dedecker, Jerome [2 ]
Jan, Christophe [3 ]
机构
[1] Cent Supelec, Lab MICS, F-92295 Chatenay Malabry, France
[2] Univ Paris 05, Sorbonne Paris Cite, Lab MAP5, UMR 8145, 45 Rue St Peres, F-75270 Paris 06, France
[3] Lycee Claude Fauriel, Ave Liberat, F-42000 St Etienne, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 04期
关键词
Central Limit theorem; Random walks on GLd (R); Strong invariance principles; STATIONARY-PROCESSES; MARTINGALE DIFFERENCES; INVARIANCE-PRINCIPLES; CONVERGENCE-RATES; RANDOM-VARIABLES; RANDOM MATRICES; MARKOV-CHAINS; LARGE NUMBERS; PARTIAL-SUMS; SEQUENCES;
D O I
10.1214/16-AIHP773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by a recent work of Benoist and Quint and extending results from the PhD thesis of the third author, we obtain limit theorems for products of independent and identically distributed elements of GLd (R), such as the Marcinkiewicz-Zygmund strong law of large numbers, the CLT (with rates in Wasserstein's distances) and almost sure invariance principles with rates.
引用
收藏
页码:1839 / 1865
页数:27
相关论文
共 50 条
  • [21] Limit theorems in the boundary hitting problem for a multidimensional random walk
    Borovkov, AA
    Mogul'skii, AA
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (02) : 245 - 270
  • [22] LIMIT THEOREMS IN THE RANDOM WALK DESCRIBED BY THE GENERALIZATION OF THE AUTOREGRESSIVE PROCESS
    Ragimov, Fada H.
    Aliyev, Soltan A.
    Ibadova, Irada A.
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2020, : 320 - 322
  • [23] Limit Theorems for Local Particle Numbers in Branching Random Walk
    Bulinskaya, E. Vl
    DOKLADY MATHEMATICS, 2012, 85 (03) : 403 - 405
  • [24] CENTRAL LIMIT-THEOREMS FOR CONDITIONAL RANDOM-WALK
    POLESCHOUK, OM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (06): : 44 - 47
  • [25] Limit Theorems in the Boundary Hitting Problem for a Multidimensional Random Walk
    A. A. Borovkov
    A. A. Mogul'skiī
    Siberian Mathematical Journal, 2001, 42 : 245 - 270
  • [26] Limit theorems for local particle numbers in branching random walk
    E. Vl. Bulinskaya
    Doklady Mathematics, 2012, 85 : 403 - 405
  • [27] Limit theorems for a random walk with memory perturbed by a dynamical system
    Coletti, Cristian F.
    de Lima, Lucas R.
    Gava, Renato J.
    Luiz, Denis A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (10)
  • [28] Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum
    Van Hao Can
    Thai Son Doan
    Van Quyet Nguyen
    Journal of Statistical Physics, 2021, 183
  • [29] Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum
    Can, Van Hao
    Doan, Thai Son
    Nguyen, Van Quyet
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (02)
  • [30] Limit theorems for random walk excursion conditioned to enclose a typical area
    Carmona, Philippe
    Petrelis, Nicolas
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (02): : 682 - 713