Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum

被引:0
|
作者
Van Hao Can
Thai Son Doan
Van Quyet Nguyen
机构
[1] National University of Singapore,Department of Statistics and Applied Probability
[2] Vietnam Academy of Science and Technology,Institute of Mathematics
来源
关键词
Limit theorems; Random walk; Stochastic resetting; Primary 60G50; Secondary 60J10;
D O I
暂无
中图分类号
学科分类号
摘要
The first part of this paper is devoted to study a model of one-dimensional random walk with memory to the maximum position described as follows. At each step the walker resets to the rightmost visited site with probability r∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in (0,1)$$\end{document} and moves as the simple random walk with remaining probability. Using the approach of renewal theory, we prove the laws of large numbers and the central limit theorems for the random walk. These results reprove and significantly enhance the analysis of the mean value and variance of the process established in Majumdar et al. (Phys Rev E 92:052126, 2015). In the second part, we expand the analysis to the situation where the memory of the walker decreases over time by assuming that at the step n the resetting probability is rn=min{rn-a,12}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n = \min \{rn^{-a}, \tfrac{1}{2}\}$$\end{document} with r, a positive parameters. For this model, we first establish the asymptotic behavior of the mean values of Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}-the current position and Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n$$\end{document}-the maximum position of the random walk. As a consequence, we observe an interesting phase transition of the ratio E[Xn]/E[Mn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {E}}}[X_n]/{{\mathbb {E}}}[M_n]$$\end{document} when a varies. Precisely, it converges to 1 in the subcritical phase a∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in (0,1)$$\end{document}, to a constant c∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in (0,1)$$\end{document} in the critical phase a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document}, and to 0 in the supercritical phase a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>1$$\end{document}. Finally, when a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>1$$\end{document}, we show that the model behaves closely to the simple random walk in the sense that Xnn⟶(d)N(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{X_n}{\sqrt{n}} \overset{(d)}{\longrightarrow } {\mathcal {N}}(0,1)$$\end{document} and Mnn⟶(d)max0≤t≤1Bt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{M_n}{\sqrt{n}} \overset{(d)}{\longrightarrow } \max _{0 \le t \le 1} B_t$$\end{document}, where N(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}(0,1)$$\end{document} is the standard normal distribution and (Bt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B_t)_{t\ge 0}$$\end{document} is the standard Brownian motion.
引用
收藏
相关论文
共 50 条
  • [1] Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum
    Can, Van Hao
    Doan, Thai Son
    Nguyen, Van Quyet
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (02)
  • [2] A new type of limit theorems for the one-dimensional quantum random walk
    Konno, N
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2005, 57 (04) : 1179 - 1195
  • [3] Random walk with random resetting to the maximum position
    Majumdar, Satya N.
    Sabhapandit, Sanjib
    Schehr, Gregory
    [J]. PHYSICAL REVIEW E, 2015, 92 (05):
  • [4] RANDOM-WALK IN A ONE-DIMENSIONAL RANDOM MEDIUM
    ASLANGUL, C
    POTTIER, N
    SAINTJAMES, D
    [J]. PHYSICA A, 1990, 164 (01): : 52 - 80
  • [5] On the Height of One-Dimensional Random Walk
    Abdelkader, Mohamed
    [J]. MATHEMATICS, 2023, 11 (21)
  • [6] Erosion by a one-dimensional random walk
    Chisholm, Rebecca H.
    Hughes, Barry D.
    Landman, Kerry A.
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [7] Limit Theorems and Absorption Problems for One-Dimensional Correlated Random Walks
    Konno, Norio
    [J]. STOCHASTIC MODELS, 2009, 25 (01) : 28 - 49
  • [8] Limit theorems for one-dimensional transient random walks in Markov environments
    Mayer-Wolf, E
    Roitershtein, A
    Zeitouni, O
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (05): : 635 - 659
  • [9] LIMIT-THEOREMS FOR ONE-DIMENSIONAL DIFFUSIONS AND RANDOM-WALKS IN RANDOM-ENVIRONMENTS
    KAWAZU, K
    TAMURA, Y
    TANAKA, H
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1989, 80 (04) : 501 - 541
  • [10] Strong transience of one-dimensional random walk in a random environment
    Peterson, Jonathon
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20