Limit theorems for the left random walk on GLd(R)

被引:14
|
作者
Cuny, Christophe [1 ]
Dedecker, Jerome [2 ]
Jan, Christophe [3 ]
机构
[1] Cent Supelec, Lab MICS, F-92295 Chatenay Malabry, France
[2] Univ Paris 05, Sorbonne Paris Cite, Lab MAP5, UMR 8145, 45 Rue St Peres, F-75270 Paris 06, France
[3] Lycee Claude Fauriel, Ave Liberat, F-42000 St Etienne, France
关键词
Central Limit theorem; Random walks on GLd (R); Strong invariance principles; STATIONARY-PROCESSES; MARTINGALE DIFFERENCES; INVARIANCE-PRINCIPLES; CONVERGENCE-RATES; RANDOM-VARIABLES; RANDOM MATRICES; MARKOV-CHAINS; LARGE NUMBERS; PARTIAL-SUMS; SEQUENCES;
D O I
10.1214/16-AIHP773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by a recent work of Benoist and Quint and extending results from the PhD thesis of the third author, we obtain limit theorems for products of independent and identically distributed elements of GLd (R), such as the Marcinkiewicz-Zygmund strong law of large numbers, the CLT (with rates in Wasserstein's distances) and almost sure invariance principles with rates.
引用
收藏
页码:1839 / 1865
页数:27
相关论文
共 50 条
  • [1] Large and moderate deviations for the left random walk on GLd(R)
    Cuny, Christophe
    Dedecker, Jerome
    Merlevede, Florence
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 503 - 527
  • [2] CONDITIONAL LIMIT THEOREMS FOR A LEFT-CONTINUOUS RANDOM-WALK
    PAKES, AG
    JOURNAL OF APPLIED PROBABILITY, 1973, 10 (01) : 39 - 53
  • [3] LIMIT THEOREMS FOR AN ASYMMETRIC RANDOM WALK
    MIKLUKHI.OG
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (04): : 710 - &
  • [4] FURTHER LIMIT THEOREMS FOR RANGE OF RANDOM WALK
    JAIN, NC
    PRUITT, WE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 829 - &
  • [5] Central limit theorems for conditional random walk
    Poleshchuk, O.M.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1993, (06): : 44 - 47
  • [6] FURTHER LIMIT THEOREMS FOR RANGE OF RANDOM WALK
    JAIN, NC
    PRUITT, WE
    JOURNAL D ANALYSE MATHEMATIQUE, 1975, 27 : 94 - 117
  • [8] LIMIT THEOREMS FOR A SPECIAL KIND OF RANDOM WALK
    MALOSHEVSKII, SG
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (03): : 507 - +
  • [9] Limit theorems for a minimal random walk model
    Coletti, Cristian F.
    Gava, Renato J.
    de Lima, Lucas R.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [10] The Limit Theorems for Random Walk with State Space R in a Space-time Random Environment
    Wei Gang WANG School of Statistics and Mathematics
    Acta Mathematica Sinica(English Series), 2008, 24 (04) : 655 - 662