Limit theorems for projections of random walk on a hypersphere

被引:0
|
作者
Skipper, Max [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1016/j.spl.2010.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that almost any one-dimensional projection of a suitably scaled random walk on a hypercube, inscribed in a hypersphere, converges weakly to an Ornstein-Uhlenbeck process as the dimension of the sphere tends to infinity. We also observe that the same result holds when the random walk is replaced with spherical Brownian motion. This latter result can be viewed as a "functional" generalisation of Poincare's observation for projections of uniform measure on high dimensional spheres: the former result is an analogous generalisation of the Bernoulli-Laplace central limit theorem. Given the relation of these two classic results to the central limit theorem for convex bodies, the modest results provided here would appear to motivate a functional generalisation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:771 / 778
页数:8
相关论文
共 50 条
  • [1] LIMIT THEOREMS FOR AN ASYMMETRIC RANDOM WALK
    MIKLUKHI.OG
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (04): : 710 - &
  • [2] FURTHER LIMIT THEOREMS FOR RANGE OF RANDOM WALK
    JAIN, NC
    PRUITT, WE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 829 - &
  • [3] Central limit theorems for conditional random walk
    Poleshchuk, O.M.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1993, (06): : 44 - 47
  • [4] FURTHER LIMIT THEOREMS FOR RANGE OF RANDOM WALK
    JAIN, NC
    PRUITT, WE
    JOURNAL D ANALYSE MATHEMATIQUE, 1975, 27 : 94 - 117
  • [5] LIMIT THEOREMS FOR A SPECIAL KIND OF RANDOM WALK
    MALOSHEVSKII, SG
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (03): : 507 - +
  • [6] Limit theorems for a minimal random walk model
    Coletti, Cristian F.
    Gava, Renato J.
    de Lima, Lucas R.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [7] Limit theorems for a branching random walk in a random or varying environment
    Huang, Chunmao
    Liu, Quansheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172
  • [8] CONDITIONAL LIMIT THEOREMS FOR THE TERMS OF A RANDOM WALK REVISITED
    Bar-Lev, Shaul K.
    Schulte-Geers, Ernst
    Stadje, Wolfgang
    JOURNAL OF APPLIED PROBABILITY, 2013, 50 (03) : 871 - 882
  • [9] Limit theorems for the left random walk on GLd(R)
    Cuny, Christophe
    Dedecker, Jerome
    Jan, Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1839 - 1865
  • [10] CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    高志强
    刘全升
    汪和松
    ActaMathematicaScientia, 2014, 34 (02) : 501 - 512