A metric of constant curvature on polycycles

被引:1
|
作者
Deza, M
Shtogrin, MI
机构
[1] Ecole Normale Super, F-75231 Paris, France
[2] Inst Stat Math, Minato Ku, Tokyo 106, Japan
[3] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
polycycle; cell complex; barycentric subdivision; plane graph;
D O I
10.1007/s11006-005-0116-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following main theorem of the theory of (r, q)-polycycles. Suppose a nonseparable plane graph satisfies the following two conditions: (1) each internal face is an r-gon, where r >= 3 (2) the degree of each internal vertex is q, where q >= 3, and the degree of each boundary vertex is at most q and at least 2. Then it also possesses the following third property: (3) the vertices, the edges, and the internal faces form a cell complex. Simple examples show that conditions (1) and (2) are independent even provided condition (3) is satisfied. These are the defining conditions for an (r, q)-polycycle.
引用
收藏
页码:204 / 212
页数:9
相关论文
共 50 条
  • [31] Bergman-Calabi diastasis and Kahler metric of constant holomorphic sectional curvature
    Dong, Robert Xin
    Wong, Bun
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (02) : 481 - 502
  • [32] EXAMPLES OF PROJECTIVE-MANIFOLDS NOT ADMITTING KAHLER METRIC WITH CONSTANT SCALAR CURVATURE
    HANO, J
    OSAKA JOURNAL OF MATHEMATICS, 1983, 20 (04) : 787 - 791
  • [33] Dirac-Lu space with pseudo-Riemannian metric of constant curvature
    Ren, Xin An
    Chen, Li
    Wang, Gui Dong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (09) : 1743 - 1752
  • [34] Constant Scalar Curvature Kahler Metric Obtains the Minimum of K-energy
    Li, Chi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (09) : 2161 - 2175
  • [35] Dirac-Lu space with pseudo-Riemannian metric of constant curvature
    Xin An Ren
    Li Chen
    Gui Dong Wang
    Acta Mathematica Sinica, English Series, 2011, 27 : 1743 - 1752
  • [36] Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric
    N. do Espírito-Santo
    S. Fornari
    K. Frensel
    J. Ripoll
    manuscripta mathematica, 2003, 111 : 459 - 470
  • [37] CURVATURE AND METRIC
    KULKARNI, RS
    ANNALS OF MATHEMATICS, 1970, 91 (02) : 311 - &
  • [38] Dissecting Trichalcogenasumanenes: π-Bowl to Planar, Invertible Curvature, and Chiral Polycycles
    Hou, Xueqing
    Li, Xuexiang
    Sun, Chunlin
    Chen, Lichuan
    Sun, Yantao
    Liu, Zhe
    Zhang, Hao-Li
    Shao, Xiangfeng
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (57) : 14375 - 14383
  • [39] Hypersurfaces of the Contact Metric Manifold with a Nullity Condition and phi-constant Sectional Curvature
    Agut, Calin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2005, 45 (02): : 231 - 240