Globally Optimal Solution to Multi-Object Tracking with Merged Measurements

被引:0
|
作者
Henriques, Joao F. [1 ]
Caseiro, Rui [1 ]
Batista, Jorge [1 ]
机构
[1] Univ Coimbra, Inst Syst & Robot, P-3000 Coimbra, Portugal
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.
引用
收藏
页码:2470 / 2477
页数:8
相关论文
共 50 条
  • [21] Relational Prior for Multi-Object Tracking
    Moskalev, Artem
    Sosnovik, Ivan
    Smeulders, Arnold
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1081 - 1085
  • [22] Multi-Object Tracking with Distributed Sensing
    Dias, Ricardo
    Lau, Nuno
    Silva, Joao
    Lim, Gi Hyun
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2016, : 564 - 569
  • [23] MeMOT: Multi-Object Tracking with Memory
    Cai, Jiarui
    Xu, Mingze
    Li, Wei
    Xiong, Yuanjun
    Xia, Wei
    Tu, Zhuowen
    Soatto, Stefano
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8080 - 8090
  • [24] A Robust Framework for Multi-object Tracking
    Jalal, Anand Singh
    Singh, Vrijendra
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT 4, 2011, 193 : 329 - 338
  • [25] HumanTop: a multi-object tracking tabletop
    Soto Candela, Emilio
    Ortega Perez, Mario
    Marin Romero, Clemente
    Perez Lopez, David C.
    Salvador Herranz, Gustavo
    Contero, Manuel
    Alcaniz Raya, Mariano
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 70 (03) : 1837 - 1868
  • [26] SiamMOT: Siamese Multi-Object Tracking
    Shuai, Bing
    Berneshawi, Andrew
    Li, Xinyu
    Modolo, Davide
    Tighe, Joseph
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12367 - 12377
  • [27] Multi-object tracking with robust object regression and association
    Li, Yi-Fan
    Ji, Hong-Bing
    Chen, Xi
    Lai, Yu-Kun
    Yang, Yong-Liang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 227
  • [28] INTERACTIVE MULTI-OBJECT TRACKING FOR VIRTUAL OBJECT MANIPULATION
    Guo, Yibo
    Yang, Michael Ying
    Rosenhahn, Bodo
    ISA13 - THE ISPRS WORKSHOP ON IMAGE SEQUENCE ANALYSIS 2013, 2013, II-3/W2 : 19 - 24
  • [29] Object Hypotheses as Points for Efficient Multi-Object Tracking
    Tarashima, Shuhei
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 828 - 835
  • [30] Multi-Object tracking based on Kalman Filtering Combining Radar and Image Measurements
    Tlig, Mohamed
    Bouchouicha, Moez
    Sayadi, Mounir
    Moreau, Eric
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,