Selective and Efficient Quantum Process Tomography without Ancilla

被引:36
|
作者
Tomas Schmiegelow, Christian [1 ,2 ]
Bendersky, Ariel [1 ,2 ]
Antonio Larotonda, Miguel [3 ]
Pablo Paz, Juan [1 ,2 ]
机构
[1] UBA, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[2] UBA, FCEyN, IFIBA, RA-1428 Buenos Aires, DF, Argentina
[3] CITEDEF, CEILAP, RA-1603 Buenos Aires, DF, Argentina
关键词
D O I
10.1103/PhysRevLett.107.100502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several methods, known as quantum process tomography, are available to characterize the evolution of quantum systems, a task of crucial importance. However, their complexity dramatically increases with the size of the system. Here we present a new method for quantum process tomography. We describe a new algorithm that can be used to selectively estimate any parameter characterizing a quantum process. Unlike any of its predecessors this new quantum tomographer combines two virtues: it requires investing a number of physical resources scaling polynomially with the number of qubits and at the same time it does not require any ancillary resources. We present the results of the first implementation of this quantum device, characterizing quantum processes affecting two qubits encoded in heralded single photons. Even for this small system our method displays clear advantages over the other existing ones.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Minimal ancilla mediated quantum computation
    Proctor T.J.
    Kendon V.
    EPJ Quantum Technology, 1 (1)
  • [42] Improving ancilla states for quantum computation
    Weinstein, Yaakov S.
    Chai, Daniel
    Xie, Newton
    QUANTUM INFORMATION PROCESSING, 2016, 15 (04) : 1445 - 1453
  • [43] Ancilla models for quantum operations: for what unitaries does the ancilla state have to be physical?
    Jiang, Zhang
    Piani, Marco
    Caves, Carlton M.
    QUANTUM INFORMATION PROCESSING, 2013, 12 (05) : 1999 - 2017
  • [44] Fourier Quantum Process Tomography
    Di Colandrea, Francesco
    Dehghan, Nazanin
    D'Errico, Alessio
    Karimi, Ebrahim
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [45] Multipass quantum process tomography
    Stanchev, Stancho G.
    Vitanov, Nikolay V.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] Simplified quantum process tomography
    Branderhorst, M. P. A.
    Nunn, J.
    Walmsley, I. A.
    Kosut, R. L.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [47] Limitations of quantum process tomography
    Shalm, LK
    Mitchell, MW
    Steinberg, AM
    QUANTUM OPTICS AND APPLICATIONS IN COMPUTING AND COMMUNICATIONS II, 2005, 5631 : 60 - 67
  • [48] Improving ancilla states for quantum computation
    Yaakov S. Weinstein
    Daniel Chai
    Newton Xie
    Quantum Information Processing, 2016, 15 : 1445 - 1453
  • [49] Ancilla models for quantum operations: for what unitaries does the ancilla state have to be physical?
    Zhang Jiang
    Marco Piani
    Carlton M. Caves
    Quantum Information Processing, 2013, 12 : 1999 - 2017
  • [50] Quantum process tomography of the quantum Fourier transform
    Weinstein, YS
    Havel, TF
    Emerson, J
    Boulant, N
    Saraceno, M
    Lloyd, S
    Cory, DG
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (13): : 6117 - 6133