共 50 条
On Application of Slowly Varying Functions with Remainder in the Theory of Galton-Watson Branching Process
被引:3
|作者:
Imomov, Azam A.
[1
,2
]
Tukhtaev, Erkin E.
[2
]
机构:
[1] Cabinet Ministers Republ Uzbekistan, State Testing Ctr, 12 Bogishamol St, Tashkent 100202, Uzbekistan
[2] Karshi State Univ, 17 Kuchabag St, Karshi City 180100, Uzbekistan
来源:
关键词:
Galton-Watson branching process;
slowly varying functions;
generating functions;
D O I:
10.17516/1997-1397-2019-12-1-51-57
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Galton-Watson branching processes. Consider the critical case so that the generating function of the per-capita offspring distribution has the infinite second moment, but its tail is regularly varying with remainder. We improve the Basic Lemma of the theory of critical Galton-Watson branching processes and refine some well-known limit results.
引用
收藏
页码:51 / 57
页数:7
相关论文