On Application of Slowly Varying Functions with Remainder in the Theory of Galton-Watson Branching Process

被引:3
|
作者
Imomov, Azam A. [1 ,2 ]
Tukhtaev, Erkin E. [2 ]
机构
[1] Cabinet Ministers Republ Uzbekistan, State Testing Ctr, 12 Bogishamol St, Tashkent 100202, Uzbekistan
[2] Karshi State Univ, 17 Kuchabag St, Karshi City 180100, Uzbekistan
关键词
Galton-Watson branching process; slowly varying functions; generating functions;
D O I
10.17516/1997-1397-2019-12-1-51-57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Galton-Watson branching processes. Consider the critical case so that the generating function of the per-capita offspring distribution has the infinite second moment, but its tail is regularly varying with remainder. We improve the Basic Lemma of the theory of critical Galton-Watson branching processes and refine some well-known limit results.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 50 条