Exploration of Balanced Metrics on Symmetric Positive Definite Matrices

被引:3
|
作者
Thanwerdas, Yann [1 ]
Pennec, Xavier [1 ]
机构
[1] Univ Cote dAzur, INRIA, Epione, France
来源
基金
欧洲研究理事会;
关键词
RIEMANNIAN GEOMETRY;
D O I
10.1007/978-3-030-26980-7_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symmetric Positive Definite (SPD) matrices have been used in many fields of medical data analysis. Many Riemannian metrics have been defined on this manifold but the choice of the Riemannian structure lacks a set of principles that could lead one to choose properly the metric. This drives us to introduce the principle of balanced metrics that relate the affine-invariant metric with the Euclidean and inverse-Euclidean metric, or the Bogoliubov-Kubo-Mori metric with the Euclidean and log-Euclidean metrics. We introduce two new families of balanced metrics, the mixed-power-Euclidean and the mixed-power-affine metrics and we discuss the relation between this new principle of balanced metrics and the concept of dual connections in information geometry.
引用
收藏
页码:484 / 493
页数:10
相关论文
共 50 条
  • [41] Symmetric Γ-submanifolds of positive definite matrices and the Sylvester equation XM = NX
    Lim, Yongdo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (09) : 2285 - 2295
  • [42] Additive models for symmetric positive-definite matrices and Lie groups
    Lin, Z.
    Muller, H. G.
    Park, B. U.
    BIOMETRIKA, 2023, 110 (02) : 361 - 379
  • [43] Pythagorean generalization of testing the equality of two symmetric positive definite matrices
    Cho, Jin Seo
    Phillips, Peter C. B.
    JOURNAL OF ECONOMETRICS, 2018, 202 (01) : 45 - 56
  • [44] The two-stage iterative methods for symmetric positive definite matrices
    Liu, ZY
    Wu, HB
    Lin, L
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (01) : 1 - 12
  • [45] Estimation of symmetric positive-definite matrices from imperfect measurements
    Chen, YX
    McInroy, JE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (10) : 1721 - 1725
  • [46] Image Set Classification by Symmetric Positive Semi-Definite Matrices
    Faraki, Masoud
    Harandi, Mehrtash T.
    Porikli, Fatih
    2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016), 2016,
  • [47] Positive Definite matrices
    Cobzas, S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (02): : 143 - 144
  • [48] POSITIVE DEFINITE MATRICES
    JOHNSON, CR
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (03): : 259 - &
  • [49] Partial Least Squares Regression on Symmetric Positive-Definite Matrices
    Alberto Perez, Raul
    Gonzalez-Farias, Graciela
    REVISTA COLOMBIANA DE ESTADISTICA, 2013, 36 (01): : 177 - 192
  • [50] A ROBUST MULTILEVEL APPROXIMATE INVERSE PRECONDITIONER FOR SYMMETRIC POSITIVE DEFINITE MATRICES
    Franceschini, Andrea
    Magri, Victor Antonio Paludetto
    Ferronato, Massimiliano
    Janna, Carlo
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (01) : 123 - 147