Exploration of Balanced Metrics on Symmetric Positive Definite Matrices

被引:3
|
作者
Thanwerdas, Yann [1 ]
Pennec, Xavier [1 ]
机构
[1] Univ Cote dAzur, INRIA, Epione, France
来源
基金
欧洲研究理事会;
关键词
RIEMANNIAN GEOMETRY;
D O I
10.1007/978-3-030-26980-7_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symmetric Positive Definite (SPD) matrices have been used in many fields of medical data analysis. Many Riemannian metrics have been defined on this manifold but the choice of the Riemannian structure lacks a set of principles that could lead one to choose properly the metric. This drives us to introduce the principle of balanced metrics that relate the affine-invariant metric with the Euclidean and inverse-Euclidean metric, or the Bogoliubov-Kubo-Mori metric with the Euclidean and log-Euclidean metrics. We introduce two new families of balanced metrics, the mixed-power-Euclidean and the mixed-power-affine metrics and we discuss the relation between this new principle of balanced metrics and the concept of dual connections in information geometry.
引用
收藏
页码:484 / 493
页数:10
相关论文
共 50 条
  • [31] mbend: an R package for bending non-positive-definite symmetric matrices to positive-definite
    Mohammad Ali Nilforooshan
    BMC Genetics, 21
  • [32] "COMPRESS AND ELIMINATE" SOLVER FOR SYMMETRIC POSITIVE DEFINITE SPARSE MATRICES
    Sushnikova, Daria A.
    Oseledets, Ivan, V
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1742 - A1762
  • [33] Riemannian Laplace Distribution on the Space of Symmetric Positive Definite Matrices
    Hajri, Hatem
    Ilea, Ioana
    Said, Salem
    Bombrun, Lionel
    Berthoumieu, Yannick
    ENTROPY, 2016, 18 (03)
  • [34] ON SYMMETRIC NORM INEQUALITIES AND POSITIVE DEFINITE BLOCK-MATRICES
    Mhanna, Antoine
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 133 - 138
  • [36] An Incomplete Cholesky Factorization for Dense Symmetric Positive Definite Matrices
    Chih-Jen Lin
    Romesh Saigal
    BIT Numerical Mathematics, 2000, 40 : 536 - 558
  • [37] On deflation and singular symmetric positive semi-definite matrices
    Tang, J. M.
    Vuik, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 603 - 614
  • [38] Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations
    Zhi-Wei Fang
    Xue-Lei Lin
    Michael K. Ng
    Hai-Wei Sun
    Numerische Mathematik, 2021, 147 : 651 - 677
  • [39] Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations
    Fang, Zhi-Wei
    Lin, Xue-Lei
    Ng, Michael K.
    Sun, Hai-Wei
    NUMERISCHE MATHEMATIK, 2021, 147 (03) : 651 - 677
  • [40] Riemannian metrics on positive definite matrices related to means. II
    Hiai, Fumio
    Petz, Denes
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2117 - 2136