Estimation of fuel moisture content using neural networks

被引:0
|
作者
Riaño, D
Ustin, SL
Usero, L
Patricio, MA
机构
[1] Univ Alcala de Henares, Dept Geog, E-28801 Alcala De Henares, Spain
[2] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing, Davis, CA 95616 USA
[3] Univ Alcala de Henares, Dept Ciencias Computac, E-28871 Alcala De Henares, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuel moisture content (FMC) is one of the variables that drive fire danger. Artificial Neural Networks (ANN) were tested to estimate FMC by calculating the two variables implicated, equivalent water thickness (EWT) and dry matter content (DM). DM was estimated for fresh and dry samples, since water masks the DM absorption features on fresh samples. We used the "Leaf Optical Properties Experiment" (LOPEX) database. 60% of the samples were used for the learning process in the network and the remaining ones for validation. EWT and DM on dry samples estimations were as good as other methods tested on the same dataset, such as inversion of radiative transfer models. DM estimations on fresh samples using ANN (r(2) = 0.86) improved significantly the results using inversion of radiative transfer models (r(2) = 0.38).
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
  • [31] Soil-moisture estimation from TerraSAR-X data using neural networks
    Matej Kseneman
    Dušan Gleich
    Božidar Potočnik
    [J]. Machine Vision and Applications, 2012, 23 : 937 - 952
  • [32] Soil-moisture estimation from TerraSAR-X data using neural networks
    Kseneman, Matej
    Gleich, Dusan
    Potocnik, Bozidar
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (05) : 937 - 952
  • [33] Multi-modal temporal CNNs for live fuel moisture content estimation
    Miller, Lynn
    Zhu, Liujun
    Yebra, Marta
    Rudiger, Christoph
    Webb, Geoffrey, I
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 156
  • [34] Live fuel moisture content estimation from MODIS: A deep learning approach
    Zhu, Liujun
    Webb, Geoffrey, I
    Yebra, Marta
    Scortechini, Gianluca
    Miller, Lynn
    Petitjean, Francois
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 179 : 81 - 91
  • [35] Estimation of moisture content in peony seed oil using spectral characteristic variables and BP neural network
    Liu X.
    Yu J.
    Wang S.
    [J]. 1600, Chinese Society of Agricultural Engineering (36): : 308 - 315
  • [36] Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices and Land Surface Temperature from MODIS Data
    Sow, Momadou
    Mbow, Cheikh
    Hely, Christelle
    Fensholt, Rasmus
    Sambou, Bienvenu
    [J]. REMOTE SENSING, 2013, 5 (06) : 2617 - 2638
  • [37] Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity
    Sablani, SS
    Rahman, MS
    [J]. FOOD RESEARCH INTERNATIONAL, 2003, 36 (06) : 617 - 623
  • [38] Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks
    Alavi, Amir Hossein
    Gandomi, Amir Hossein
    Mollahassani, Ali
    Heshmati, Ali Akbar
    Rashed, Azadeh
    [J]. JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2010, 173 (03) : 368 - 379
  • [39] Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks
    李炜
    朱新坚
    莫志军
    [J]. Journal of Central South University, 2007, (05) : 690 - 695
  • [40] Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks
    Li Wei
    Zhu Xin-jian
    Mo Zhi-jun
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2007, 14 (05): : 690 - 695