Artificial ecosystem selection for evolutionary optimisation

被引:0
|
作者
Williams, Hywel T. P. [1 ]
Lenton, Timothy M. [1 ]
机构
[1] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England
来源
关键词
artificial ecosystem selection; evolutionary optimisation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial selection of microbial ecosystems for their collective function has been shown to be effective in laboratory experiments. In previous work, we used evolutionary simulation models to understand the mechanistic basis of the observed ecosystem-level response to artificial selection. Here we extend this work to consider artificial ecosystem selection as a method for evolutionary optimisation. By allowing solutions involving multiple species, artificial ecosystem selection adds a new class of multi-species solution to the available search space, while retaining all the single-species solutions achievable by lower-level selection methods. We explore the conditions where multi-species solutions (that necessitate higher-level selection) are likely to be found, and discuss the potential advantages of artificial ecosystem selection as an optimisation method.
引用
收藏
页码:93 / +
页数:2
相关论文
共 50 条
  • [1] Artificial ecosystem selection
    Swenson, W
    Wilson, DS
    Elias, R
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) : 9110 - 9114
  • [2] The Evolutionary Dynamics of the Artificial Intelligence Ecosystem
    Jacobides, Michael G.
    Brusoni, Stefano
    Candelon, Francois
    STRATEGY SCIENCE, 2021, 6 (04) : 412 - 435
  • [3] Interacting Robots in an Artificial Evolutionary Ecosystem
    De Carlo, Matteo
    Ferrante, Eliseo
    Ellers, Jacintha
    Meynen, Gerben
    Eiben, A. E.
    GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 : 339 - 354
  • [4] MICROBIAL SELECTION IN AN ARTIFICIAL ECOSYSTEM
    VINCENT, WS
    HALL, RM
    BIOLOGICAL BULLETIN, 1983, 165 (02): : 512 - 512
  • [5] Optimisation of strain selection in evolutionary continuous culture
    Bayen, T.
    Mairet, F.
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (12) : 2748 - 2759
  • [6] The Role of Artificial Neural Networks in Evolutionary Optimisation: A Review
    Maarouf, M.
    Sosa, A.
    Galvan, B.
    Greiner, D.
    Winter, G.
    Mendez, M.
    Aguasca, R.
    ADVANCES IN EVOLUTIONARY AND DETERMINISTIC METHODS FOR DESIGN, OPTIMIZATION AND CONTROL IN ENGINEERING AND SCIENCES, 2015, 36 : 59 - 76
  • [7] Evolutionary artificial neural network optimisation in financial engineering
    Hayward, S
    HIS'04: Fourth International Conference on Hybrid Intelligent Systems, Proceedings, 2005, : 210 - 215
  • [8] Selection strategies for ambiguous graph matching by evolutionary optimisation
    Myers, R
    Hancock, ER
    ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 397 - 406
  • [9] Parallel simulated annealing and evolutionary selection for combinatorial optimisation
    Delport, V
    ELECTRONICS LETTERS, 1998, 34 (08) : 758 - 759
  • [10] Modelling artificial ecosystem selection: A preliminary investigation
    Penn, A
    ADVANCES IN ARTIFICIAL LIFE, PROCEEDINGS, 2003, 2801 : 659 - 666