Compact Convolutional Neural Networks for Ultrasound Beamforming

被引:0
|
作者
Chen, Zhanwen [1 ]
Luchies, Adam [2 ]
Byram, Brett [2 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Biomed Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
关键词
ultrasound; beamforming; convolutional neural networks; deep learning;
D O I
10.1109/ultsym.2019.8925949
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We trained convolutional neural networks (CNNs) to suppress off-axis scattering in the short-time Fourier Transform (STFT) domain. Our training data were point target responses from simulated anechoic cysts. We used random neural architecture search to build CNN models with variable input formulations, layer sizes, and training hyperparameters. Our results showed that CNNs were easier to train, as they required fewer network weights to match the performance of fully-connected networks (FCNs). The best CNN models achieved comparable phantom CNRs with with two to three orders of magnitude fewer weights.
引用
收藏
页码:560 / 562
页数:3
相关论文
共 50 条
  • [41] Muscle Type Classification on Ultrasound Imaging using Deep Convolutional Neural Networks
    Katakis, Sofoklis
    Barotsis, Nikolaos
    Kastaniotis, Dimitrios
    Theoharatos, Christos
    Tsourounis, Dimitrios
    Fotopoulos, Spiros
    Panagiotopoulos, Elias
    PROCEEDINGS 2018 IEEE 13TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2018,
  • [42] Hepatocellular Carcinoma Segmentation within Ultrasound Images using Convolutional Neural Networks
    Vancea, Flaviu
    Mitrea, Delia
    Nedevschi, Sergiu
    Rotaru, Magda
    Stefanescu, Horia
    Badea, Radu
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 483 - 490
  • [43] Automated Detection of Liver Steatosis in Ultrasound Images Using Convolutional Neural Networks
    Mohammad, Umar Farooq
    Almekkawy, Mohamed
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [44] Ultrasound Scatterer Density Classification Using Convolutional Neural Networks and Patch Statistics
    Tehrani, Ali K. Z.
    Amiri, Mina
    Rosado-Mendez, Ivan M.
    Hall, Timothy J.
    Rivaz, Hassan
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (08) : 2697 - 2706
  • [46] Automatic Placenta Abnormality Detection Using Convolutional Neural Networks on Ultrasound Texture
    Hu, Zoe
    Hu, Ricky
    Yan, Ryan
    Mayer, Chantal
    Rohling, Robert N.
    Singla, Rohit
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 147 - 156
  • [47] A Pilot Study on Convolutional Neural Networks for Motion Estimation From Ultrasound Images
    Evain, Ewan
    Faraz, Khuram
    Grenier, Thomas
    Garcia, Damien
    De Craene, Mathieu
    Bernard, Olivier
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (12) : 2565 - 2573
  • [48] Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography
    Lahivaara, Timo
    Karkkainen, Leo
    Huttunen, Janne M. J.
    Hesthaven, Jan S.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 143 (02): : 1148 - 1158
  • [49] Coupling Convolutional Neural Networks and Hough Voting for Robust Segmentation of Ultrasound Volumes
    Kroll, Christine
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    PATTERN RECOGNITION, GCPR 2016, 2016, 9796 : 439 - 450
  • [50] Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images
    Ma, Jinlian
    Wu, Fa
    Jiang, Tian'an
    Zhu, Jiang
    Kong, Dexing
    MEDICAL PHYSICS, 2017, 44 (05) : 1678 - 1691