Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

被引:48
|
作者
Lahivaara, Timo [1 ]
Karkkainen, Leo [2 ,4 ]
Huttunen, Janne M. J. [2 ,4 ]
Hesthaven, Jan S. [3 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[2] Nokia Technol, Espoo, Finland
[3] Ecole Polytech Fed Lausanne, Computat Math & Simulat Sci, Lausanne, Switzerland
[4] Nokia Bell Labs, Espoo, Finland
来源
基金
芬兰科学院;
关键词
DISCONTINUOUS GALERKIN METHOD; NONUNIFORM BASIS ORDER; WAVE-PROPAGATION; ELASTIC-WAVES; ACOUSTIC PROPAGATION; MODEL;
D O I
10.1121/1.5024341
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The feasibility of data based machine learning applied to ultrasound tomography is studied to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, a high-order discontinuous Galerkin method is considered, while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, the material porosity and tortuosity is estimated, while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirm the feasibility and accuracy of this approach. (C) 2018 Acoustical Society of America.
引用
收藏
页码:1148 / 1158
页数:11
相关论文
共 50 条
  • [2] Instantaneous ultrasound computed tomography using deep convolutional neural networks
    Donaldson, Robert
    He, Jiaze
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV, 2021, 11593
  • [3] Evaluating Deep Convolutional Neural Networks for Material Classification
    Kalliatakis, Grigorios
    Stamatiadis, Georgios
    Ehsan, Shoaib
    Leonardis, Ales
    Gall, Juergen
    Sticlaru, Anca
    McDonald-Maier, Klaus D.
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 5, 2017, : 346 - 352
  • [4] Estimating High Definition Map Parameters with Convolutional Neural Networks
    Bittel, Sebastian
    Rehfeld, Timo
    Weber, Michael
    Zoellner, J. Marius
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 52 - 56
  • [5] Convolutional neural networks for estimating transport parameters of fibrous materials based on micro-computerized tomography images
    Jeon, Ju Hyun
    Chemali, Elias
    Yang, Sung Soo
    Kang, Yeon June
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (04): : 2813 - 2828
  • [6] Ultrasound liver steatosis diagnosis using deep convolutional neural networks
    Simion, Georgiana
    Caleanu, Catalin
    Barbu, Patricia Andreea
    2021 IEEE 27TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME 2021), 2021, : 326 - 329
  • [7] Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks
    Smistad, Erik
    Lovstakken, Lasse
    DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 : 30 - 38
  • [8] DESCRIBING ULTRASOUND VIDEO CONTENT USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Gao, Y.
    Maraci, M. A.
    Noble, J. A.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 787 - 790
  • [9] Comparison of deep convolutional neural networks for classification of breast ultrasound images
    Park J.
    Kim Y.
    Ryu C.-W.
    Kim H.
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (01): : 176 - 183
  • [10] Deep Convolutional Neural Networks
    Gonzalez, Rafael C.
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (06) : 79 - 87