Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

被引:48
|
作者
Lahivaara, Timo [1 ]
Karkkainen, Leo [2 ,4 ]
Huttunen, Janne M. J. [2 ,4 ]
Hesthaven, Jan S. [3 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[2] Nokia Technol, Espoo, Finland
[3] Ecole Polytech Fed Lausanne, Computat Math & Simulat Sci, Lausanne, Switzerland
[4] Nokia Bell Labs, Espoo, Finland
来源
基金
芬兰科学院;
关键词
DISCONTINUOUS GALERKIN METHOD; NONUNIFORM BASIS ORDER; WAVE-PROPAGATION; ELASTIC-WAVES; ACOUSTIC PROPAGATION; MODEL;
D O I
10.1121/1.5024341
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The feasibility of data based machine learning applied to ultrasound tomography is studied to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, a high-order discontinuous Galerkin method is considered, while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, the material porosity and tortuosity is estimated, while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirm the feasibility and accuracy of this approach. (C) 2018 Acoustical Society of America.
引用
收藏
页码:1148 / 1158
页数:11
相关论文
共 50 条
  • [31] Fusion of Deep Convolutional Neural Networks
    Suchy, Robert
    Ezekiel, Soundararajan
    Cornacchia, Maria
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [32] Estimating Dispersion Coefficient in Flow Through Heterogeneous Porous Media by a Deep Convolutional Neural Network
    Kamrava, Serveh
    Im, Jinwoo
    de Barros, Felipe P. J.
    Sahimi, Muhammad
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (18)
  • [33] A Deep Learning Approach for Automatic Ionogram Parameters Recognition With Convolutional Neural Networks
    Sherstyukov, Ruslan
    Moges, Samson
    Kozlovsky, Alexander
    Ulich, Thomas
    EARTH AND SPACE SCIENCE, 2024, 11 (10)
  • [34] Detecting dynamical parameters in evacuation behavior via deep convolutional neural networks
    Hou, Huaidian
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 78 - 81
  • [35] Microwave tomography for estimating moisture content distribution in porous foam using neural networks
    Yadav, Rahul
    Vauhkonen, Marko
    Link, Guido
    Betz, Stefan
    Lahivaara, Timo
    2020 14TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2020), 2020,
  • [36] ESTIMATING LOCAL TISSUE EXPANSION IN THORACIC COMPUTED TOMOGRAPHY IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
    Gerard, Sarah E.
    Reinhardt, Joseph M.
    Christensen, Gary E.
    Estepar, Raul San Jose
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1856 - 1860
  • [37] APPLICATIONS OF NEURAL NETWORKS TO ULTRASOUND TOMOGRAPHY
    CONRATH, BC
    DAFT, CMW
    OBRIEN, WD
    IEEE 1989 ULTRASONICS SYMPOSIUM : PROCEEDINGS, VOLS 1 AND 2, 1989, : 1007 - 1010
  • [38] Visualization of Deep Convolutional Neural Networks to Investigate Porous Nanocomposites for Electromagnetic Interference Shielding
    Shi, Meng
    Feng, Chang-Ping
    Tu, You-Lei
    Shi, Guang-Sheng
    He, Pei-Yao
    Zhang, Yang
    Zhang, Jie
    Li, Jiang
    Guo, Shaoyun
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (18) : 22602 - 22615
  • [39] Rib fracture detection in computed tomography images using deep convolutional neural networks
    Kaiume, Masafumi
    Suzuki, Shigeru
    Yasaka, Koichiro
    Sugawara, Haruto
    Shen, Yun
    Katada, Yoshiaki
    Ishikawa, Takuya
    Fukui, Rika
    Abe, Osamu
    MEDICINE, 2021, 100 (20) : E26024
  • [40] Computational optical tomography using 3-D deep convolutional neural networks
    Thanh Nguyen
    Vy Bui
    Nehmetallah, George
    OPTICAL ENGINEERING, 2018, 57 (04)