Reduction of Euler-Lagrange equations in gauge theories

被引:1
|
作者
Geyer, B [1 ]
Gitman, D
Tyutin, I
机构
[1] Univ Leipzig, Naturwisensch Theoret Zentrum, Leipzig, Germany
[2] Univ Leipzig, Inst Theoret Phys, Leipzig, Germany
[3] Univ Sao Paulo, Inst Phys, BR-05508 Sao Paulo, Brazil
[4] PN Lebedev Phys Inst, Moscow 117924, Russia
来源
关键词
gauge theories; lagrangian formulation;
D O I
10.1142/S0217751X03015519
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a reduction procedure to the so-called canonical form for the Euler-Lagrange equations of a general gauge theory. The reduction procedure reveals constraints in the Lagrangian formulation of singular theories and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. As a demonstration we apply the reduction procedure to theories without higher derivatives.
引用
收藏
页码:2077 / 2084
页数:8
相关论文
共 50 条
  • [1] Reduction of Euler-Lagrange equations in general gauge theories with external fields
    Geyer, B
    Gitman, DM
    Tyutin, IV
    QFEXT'03: QUANTUM FIELD THEORY UNDER THE INFLUENCE OF EXTERNAL CONDITIONS, PROCEEDINGS, 2004, : 276 - 281
  • [2] Canonical form of Euler-Lagrange equations and gauge symmetries
    Geyer, B
    Gitman, DM
    Tyutin, IV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23): : 6587 - 6609
  • [3] On the commutator of C∞-symmetries and the reduction of Euler-Lagrange equations
    Ruiz, A.
    Muriel, C.
    Olver, P. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (14)
  • [4] On the generalized Euler-Lagrange equations
    Chen, JW
    Lai, HC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) : 681 - 697
  • [5] GAUGE-INVARIANCE OF THE EULER-LAGRANGE EXPRESSIONS
    NORIEGA, RJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (01) : 31 - 36
  • [6] EULER-LAGRANGE EQUATIONS ON CANTOR SETS
    Baleanu, Dumitru
    Yang, Xiao-Jun
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4, 2014,
  • [7] On the global version of Euler-Lagrange equations
    Saraví, REG
    Solomin, JE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7301 - 7305
  • [8] Fractional Euler-Lagrange equations revisited
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2012, 69 (03) : 977 - 982
  • [9] On a class of special Euler-Lagrange equations
    Yan, Baisheng
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [10] On the Equivalence of Euler-Lagrange and Noether Equations
    A. C. Faliagas
    Mathematical Physics, Analysis and Geometry, 2016, 19