Continuous Detection of Forest Loss in Vietnam, Laos, and Cambodia Using Sentinel-1 Data

被引:16
|
作者
Mermoz, Stephane [1 ]
Bouvet, Alexandre [1 ,2 ]
Koleck, Thierry [3 ]
Ballere, Marie [3 ,4 ,5 ,6 ]
Le Toan, Thuy [2 ]
机构
[1] GlobEO, F-31400 Toulouse, France
[2] Univ Toulouse, CESBIO, CNRS, CNES,IRD,INRAE,UPS, F-31400 Toulouse, France
[3] Ctr Natl Etud Spatiales, F-31400 Toulouse, France
[4] World Wildlife Fund France, F-93310 Le Pre St Gervais, France
[5] Univ Gustave Eiffel, IGN, LaSTIG, F-77420 Champs Sur Marne, France
[6] Cerema Sud Ouest, F-31400 Toulouse, France
关键词
forest loss detection; Sentinel-1; tropical forest; Southeast Asia; protected areas; SAR;
D O I
10.3390/rs13234877
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we demonstrate the ability of a new operational system to detect forest loss at a large scale accurately and in a timely manner. We produced forest loss maps every week over Vietnam, Cambodia, and Laos (>750,000 km(2) in total) using Sentinel-1 data. To do so, we used the forest loss detection method based on shadow detection. The main advantage of this method is the ability to avoid false alarms, which is relevant in Southeast Asia where the areas of forest disturbance may be very small and scattered and detection is used for alert purposes. The estimated user accuracy of the forest loss map was 0.95 for forest disturbances and 0.99 for intact forest, and the estimated producer's accuracy was 0.90 for forest disturbances and 0.99 for intact forest, with a minimum mapping unit of 0.1 ha. This represents an important step forward compared to the values achieved by previous studies. We also found that approximately half of forest disturbances in Cambodia from 2018 to 2020 occurred in protected areas, which emphasizes the lack of efficiency in the protection and conservation of natural resources in protected areas. On an annual basis, the forest loss areas detected using our method are found to be similar to the estimations from Global Forest Watch. These results highlight the fact that this method provides not only quick alerts but also reliable detections that can be used to calculate weekly, monthly, or annual forest loss statistics at a national scale.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Cotton Phenology Detection Using Time Series Sentinel-1 and PlanetScope Data
    Wei, Shanshan
    Lim, Kim Hwa
    Lee, Ken Yoong
    Tan, Li Ming
    Chew, Boon Jin
    Liew, Soo Chin
    [J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21
  • [22] Detection of Temporary Flooded Vegetation Using Sentinel-1 Time Series Data
    Tsyganskaya, Viktoriya
    Martinis, Sandro
    Marzahn, Philip
    Ludwig, Ralf
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [23] Geocoding uncertainty analysis for the automated processing of Sentinel-1 data using Sentinel-1 Toolbox software
    Dostalova, Alena
    Naeimi, Vahid
    Wagner, Wolfgang
    Elefante, Stefano
    Cao, Senmao
    Persson, Henrik
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004
  • [24] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [25] Forest disturbance alerts for the Congo Basin using Sentinel-1
    Reiche, Johannes
    Mullissa, Adugna
    Slagter, Bart
    Gou, Yaqing
    Tsendbazar, Nandin-Erdene
    Odongo-Braun, Christelle
    Vollrath, Andreas
    Weisse, Mikaela J.
    Stolle, Fred
    Pickens, Amy
    Donchyts, Gennadii
    Clinton, Nicholas
    Gorelick, Noel
    Herold, Martin
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (02):
  • [26] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965
  • [27] ROAD DETECTION IN A FOREST USING SENTINEL-1 AND FBR TIME-SERIES SPECKLE FILTERING
    Michenot, Florent
    Hinostroza, Israel
    Guinvarc'h, Regis
    Thirion-Lefevre, Laetitia
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6561 - 6563
  • [28] Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
    Frison, Pierre-Louis
    Fruneau, Benedicte
    Kmiha, Syrine
    Soudani, Kamel
    Dufrene, Eric
    Thuy Le Toan
    Koleck, Thierry
    Villard, Ludovic
    Mougin, Eric
    Rudant, Jean-Paul
    [J]. REMOTE SENSING, 2018, 10 (12)
  • [29] AUTOMATIC DEFORESTATION DETECTION METHODOLOGY USING SENTINEL-1
    Vargas, Christian
    Itoh, Takuya
    Tsuji, Shinichiro
    Koide, Takahiro
    Hirose, Kazuyo
    Okonogi, Hiroaki
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6590 - 6593
  • [30] Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data
    Tomppo, Erkki
    Antropov, Oleg
    Praks, Jaan
    [J]. REMOTE SENSING, 2019, 11 (04)