Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology

被引:69
|
作者
Frison, Pierre-Louis [1 ]
Fruneau, Benedicte [1 ]
Kmiha, Syrine [1 ]
Soudani, Kamel [2 ]
Dufrene, Eric [2 ]
Thuy Le Toan [3 ]
Koleck, Thierry [3 ]
Villard, Ludovic [3 ]
Mougin, Eric [4 ]
Rudant, Jean-Paul [1 ]
机构
[1] Univ Paris Est, LaSTIG MATIS, IGN, 5 Bd Descartes, F-77455 Champs Sur Marne 2, Marne La Vallee, France
[2] Univ Paris Saclay, Univ Paris Sud, Ecol Systemat Evolut, CNRS,AgroParisTech, F-91400 Orsay, France
[3] IRD, UPS, CNES, CESBIO,CNRS,UMR 5126, 18 Ave Edouard Belin,Bpi 2801, F-31401 Toulouse 9, France
[4] UPS, IRD, Observ Midi Pyrenees Geosci Environm Toulouse, CNRS,UMR 5563, 14 Ave E Belin, F-31400 Toulouse, France
关键词
seasonal monitoring; temperate mixed forest; SAR; Sentinel-1; radar backscattering coefficient; interferometric coherence; SOIL-MOISTURE; CLIMATE-CHANGE; C-BAND;
D O I
10.3390/rs10122049
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, the potential of Sentinel-1 data to seasonally monitor temperate forests was investigated by analyzing radar signatures observed from plots in the Fontainebleau Forest of the Ile de France region, France, for the period extending from March 2015 to January 2016. Radar backscattering coefficients, sigma(0) and the amplitude of temporal interferometric coherence profiles in relation to environmental variables are shown, such as in situ precipitation and air temperature. The high temporal frequency of Sentinel-1 acquisitions (i.e., twelve days, or six, if both Sentinel-1A and B are combined over Europe) and the dual polarization configuration (VV and VH over most land surfaces) made a significant contribution. In particular, the radar backscattering coefficient ratio of VV to VH polarization, sigma(0)(VV)/sigma(0)(VH), showed a well-pronounced seasonality that was correlated with vegetation phenology, as confirmed in comparison to NDVI profiles derived from Landsat-8 (r = 0.77) over stands of deciduous trees. These results illustrate the high potential of Sentinel-1 data for monitoring vegetation, and as these data are not sensitive to the atmosphere, the phenology could be estimated with more accuracy than optical data. These observations will be quantitatively analyzed with the use of electromagnetic models in the near future.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping
    Nasrallah, Ali
    Baghdadi, Nicolas
    El Hajj, Mohammad
    Darwish, Talal
    Belhouchette, Hatem
    Faour, Ghaleb
    Darwich, Salem
    Mhawej, Mario
    [J]. REMOTE SENSING, 2019, 11 (19)
  • [2] Sentinel-1 time series data for monitoring the phenology of winter wheat
    Schlund, Michael
    Erasmi, Stefan
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 246 (246)
  • [3] Sentinel-1 time series data for sunflower (Helianthus annuus) phenology monitoring
    Qadir, Abdul
    Skakun, Sergii
    Eun, Jaemin
    Prashnani, Meghavi
    Shumilo, Leonid
    [J]. REMOTE SENSING OF ENVIRONMENT, 2023, 295
  • [4] SENSITIVITY OF SENTINEL-1 TO RAIN STORED IN TEMPERATE FOREST
    Vaca, Cesar Cisneros
    van der Tol, Christiaan
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5330 - 5333
  • [5] POTENTIAL AND LIMITS OF SENTINEL-1 DATA FOR SMALL ALPINE GLACIERS MONITORING
    Jauvin, Matthias
    Yan, Yajing
    Trouve, Emmanuel
    Fruneau, Benedicte
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5165 - 5168
  • [6] FOREST AREA DERIVATION FROM SENTINEL-1 DATA
    Alena, Dostalova
    Markus, Hollaus
    Milutin, Milenkovic
    Wolfgang, Wagner
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 227 - 233
  • [7] Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest
    Liu, Lingling
    Liang, Liang
    Schwartz, Mark D.
    Donnelly, Alison
    Wang, Zhuosen
    Schaaf, Crystal B.
    Liu, Liangyun
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 160 : 156 - 165
  • [8] CLASSIFICATION AND DEFORESTATION MONITORING USING SENTINEL-1 C-SAR IMAGES IN A TEMPERATE EXPLOITED PINE FOREST
    Ygorra, B.
    Frappart, F.
    Wigneron, J-P
    Moisy, C.
    Pillot, B.
    Puiseux, J.
    Riazanoff, S.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 691 - 694
  • [9] USING SENTINEL-1 DATA FOR MONITORING OF SOIL MOISTURE
    Garkusha, Igor N.
    Hnatushenko, Volodymyr V.
    Vasyliev, Volodymyr V.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1656 - 1659
  • [10] SENTINEL-1/2 TIME SERIES FOR SELECTIVE LOGGING MONITORING IN TEMPERATE FORESTS
    Tanase, Mihai
    Borlaf, Ignacio
    Pascu, Ionut
    Pitar, Diana
    Apostol, Bogdan
    Petrila, Marius
    Chivulescu, Serban
    Leca, Stefan
    Pitar, Daniel
    Ciceu, Albert
    Dobre, Alexandru
    Popescu, Flaviu
    Badea, Ovidiu
    Aponte, Cristina
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2902 - 2905