Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology

被引:69
|
作者
Frison, Pierre-Louis [1 ]
Fruneau, Benedicte [1 ]
Kmiha, Syrine [1 ]
Soudani, Kamel [2 ]
Dufrene, Eric [2 ]
Thuy Le Toan [3 ]
Koleck, Thierry [3 ]
Villard, Ludovic [3 ]
Mougin, Eric [4 ]
Rudant, Jean-Paul [1 ]
机构
[1] Univ Paris Est, LaSTIG MATIS, IGN, 5 Bd Descartes, F-77455 Champs Sur Marne 2, Marne La Vallee, France
[2] Univ Paris Saclay, Univ Paris Sud, Ecol Systemat Evolut, CNRS,AgroParisTech, F-91400 Orsay, France
[3] IRD, UPS, CNES, CESBIO,CNRS,UMR 5126, 18 Ave Edouard Belin,Bpi 2801, F-31401 Toulouse 9, France
[4] UPS, IRD, Observ Midi Pyrenees Geosci Environm Toulouse, CNRS,UMR 5563, 14 Ave E Belin, F-31400 Toulouse, France
关键词
seasonal monitoring; temperate mixed forest; SAR; Sentinel-1; radar backscattering coefficient; interferometric coherence; SOIL-MOISTURE; CLIMATE-CHANGE; C-BAND;
D O I
10.3390/rs10122049
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, the potential of Sentinel-1 data to seasonally monitor temperate forests was investigated by analyzing radar signatures observed from plots in the Fontainebleau Forest of the Ile de France region, France, for the period extending from March 2015 to January 2016. Radar backscattering coefficients, sigma(0) and the amplitude of temporal interferometric coherence profiles in relation to environmental variables are shown, such as in situ precipitation and air temperature. The high temporal frequency of Sentinel-1 acquisitions (i.e., twelve days, or six, if both Sentinel-1A and B are combined over Europe) and the dual polarization configuration (VV and VH over most land surfaces) made a significant contribution. In particular, the radar backscattering coefficient ratio of VV to VH polarization, sigma(0)(VV)/sigma(0)(VH), showed a well-pronounced seasonality that was correlated with vegetation phenology, as confirmed in comparison to NDVI profiles derived from Landsat-8 (r = 0.77) over stands of deciduous trees. These results illustrate the high potential of Sentinel-1 data for monitoring vegetation, and as these data are not sensitive to the atmosphere, the phenology could be estimated with more accuracy than optical data. These observations will be quantitatively analyzed with the use of electromagnetic models in the near future.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    [J]. GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089
  • [32] On the potential of Sentinel-1 for sub-field scale soil moisture monitoring
    van Hateren, T. C.
    Chini, M.
    Matgen, P.
    Pulvirenti, L.
    Pierdicca, N.
    Teuling, A. J.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 120
  • [33] Potential of Time-Series Sentinel 2 Data for Monitoring Avocado Crop Phenology
    Rahman, Muhammad Moshiur
    Robson, Andrew
    Brinkhoff, James
    [J]. REMOTE SENSING, 2022, 14 (23)
  • [34] Sentinel-1 Data Processing and Products
    Rosich, B.
    Miranda, N.
    Grimont, P.
    Potin, P.
    Sabella, G.
    Putignano, C.
    Lo Zito, F.
    Izzo, G. P.
    Angelucci, B.
    Buscemi, G.
    Houghton, N.
    Doyle, E.
    Badessi, S.
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [35] Sentinel-1 for Monitoring Reservoirs: A Performance Analysis
    Amitrano, Donato
    Di Martino, Gerardo
    Iodice, Antonio
    Mitidieri, Francesco
    Papa, Maria Nicolina
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. REMOTE SENSING, 2014, 6 (11): : 10676 - 10693
  • [36] Vegetation descriptors from Sentinel-1 SAR data for crop growth monitoring
    Bao, Xin
    Zhang, Rui
    Lv, Jichao
    Wu, Renzhe
    Zhang, Hongsheng
    Chen, Jie
    Zhang, Bo
    Ouyang, Xiaoying
    Liu, Guoxiang
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 203 : 86 - 114
  • [37] MONITORING WATER HYACINTH IN KUTTANAD, INDIA USING SENTINEL-1 SAR DATA
    Simpson, Morgan
    Marino, Armando
    Prabhu, G. Nagendra
    Bhowmik, Deepayan
    Rupavatharam, Srikanth
    Datta, Aviraj
    Kleczkowski, Adam
    Sujeetha, J. Alice R. P.
    Maharaj, Savitri
    [J]. 2020 IEEE INDIA GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (INGARSS), 2020, : 13 - 16
  • [38] Monitoring and analysis of Woda landslide (China) using InSAR and Sentinel-1 data
    Li, Bingquan
    Jiang, Wenliang
    Li, Yongsheng
    Luo, Yi
    Jiao, Qisong
    Zhang, Qingyun
    [J]. ADVANCES IN SPACE RESEARCH, 2023, 72 (05) : 1789 - 1802
  • [39] MONITORING VOLCANO DEFORMATION FROM SPACE WITH SENTINEL-1 DATA FOR CIVIL PROTECTION
    Casu, F.
    Bonano, M.
    Castaldo, R.
    De Luca, C.
    De Novellis, V.
    Lanari, R.
    Manunta, M.
    Manzo, M.
    Onorato, G.
    Pepe, S.
    Solaro, G.
    Tizzani, P.
    Valerio, E.
    Zinno, I.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9303 - 9305
  • [40] Deformation monitoring using Persistent Scatterer Interferometry and Sentinel-1 SAR data
    Devanthery, Nuria
    Crosetto, Michele
    Cuevas-Gonzalez, Maria
    Monserrat, Oriol
    Barra, Anna
    Crippa, Bruno
    [J]. INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERIS/PROJMAN / HCIST 2016, 2016, 100 : 1121 - 1126