SENSITIVITY OF SENTINEL-1 TO RAIN STORED IN TEMPERATE FOREST

被引:0
|
作者
Vaca, Cesar Cisneros [1 ]
van der Tol, Christiaan [1 ]
机构
[1] Univ Twente, Fac Geoinformat & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Forest; interception; SAR; radar; Sentinel-1; INTERCEPTION LOSS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sensitivity of radar backscatter to the amount of intercepted rain in a Douglas-fir and a beech stand was analyzed to determine the feasibility of retrieval canopy storage capacity from Sentinel-1 (C-band). On average, backscatter of a wet Douglas-fir canopy is similar to 1.5 dB and similar to 1 dB higher than the backscatter when the canopy is dry at VH and VV polarization respectively. No consistent differences were found in the case of the beech stand between wet and dry conditions. It is argued that the use of Sentinel-1 to retrieve the amount of intercepted rainfall is limited at best to a reliability of 50% and to canopies with large storage capacity.
引用
收藏
页码:5330 / 5333
页数:4
相关论文
共 50 条
  • [1] Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
    Frison, Pierre-Louis
    Fruneau, Benedicte
    Kmiha, Syrine
    Soudani, Kamel
    Dufrene, Eric
    Thuy Le Toan
    Koleck, Thierry
    Villard, Ludovic
    Mougin, Eric
    Rudant, Jean-Paul
    [J]. REMOTE SENSING, 2018, 10 (12)
  • [2] Sensitivity of Sentinel-1 Backscatter to Management-Related Disturbances in Temperate Forests
    van der Woude, Sietse
    Reiche, Johannes
    Sterck, Frank
    Nabuurs, Gert-Jan
    Vos, Marleen
    Herold, Martin
    [J]. REMOTE SENSING, 2024, 16 (09)
  • [3] Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping
    Borlaf-Mena, Ignacio
    Badea, Ovidiu
    Tanase, Mihai Andrei
    [J]. REMOTE SENSING, 2021, 13 (23)
  • [4] Sensitivity of Sentinel-1 backscatter to characteristics of buildings
    Koppel, K.
    Zalite, K.
    Voormansik, K.
    Jagdhuber, Thomas
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (22) : 6298 - 6318
  • [5] FOREST AREA DERIVATION FROM SENTINEL-1 DATA
    Alena, Dostalova
    Markus, Hollaus
    Milutin, Milenkovic
    Wolfgang, Wagner
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 227 - 233
  • [6] CLASSIFICATION AND DEFORESTATION MONITORING USING SENTINEL-1 C-SAR IMAGES IN A TEMPERATE EXPLOITED PINE FOREST
    Ygorra, B.
    Frappart, F.
    Wigneron, J-P
    Moisy, C.
    Pillot, B.
    Puiseux, J.
    Riazanoff, S.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 691 - 694
  • [7] Automated Rain Detection by Dual-Polarization Sentinel-1 Data
    Zhao, Yuan
    Longepe, Nicolas
    Mouche, Alexis
    Husson, Romain
    [J]. REMOTE SENSING, 2021, 13 (16)
  • [8] Annual seasonality in Sentinel-1 signal for forest mapping and forest type classification
    Dostalova, Alena
    Wagner, Wolfgang
    Milenkovic, Milutin
    Hollaus, Markus
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (21) : 7738 - 7760
  • [9] European Wide Forest Classification Based on Sentinel-1 Data
    Dostalova, Alena
    Lang, Mait
    Ivanovs, Janis
    Waser, Lars T.
    Wagner, Wolfgang
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 27
  • [10] Uncertainties and Perspectives on Forest Height Estimates by Sentinel-1 Interferometry
    De Petris, Samuele
    Sarvia, Filippo
    Borgogno-Mondino, Enrico
    [J]. EARTH, 2022, 3 (01): : 479 - 492