Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

被引:10
|
作者
Hsieh, Meng-Chang [1 ,2 ]
Chiu, Yi-Hsin [2 ]
Lin, Sheng-Fu [3 ]
Chang, Jenq-Yang [3 ]
Chang, Chia-Ou [1 ]
Chiang, Huihua Kenny [2 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 10617, Taiwan
[2] Natl Yang Ming Univ, Inst Biomed Engn, Taipei 11221, Taiwan
[3] Natl Cent Univ, Dept Opt & Photon, Jhongli 32001, Taiwan
来源
SENSORS | 2015年 / 15卷 / 02期
关键词
QUARTZ-CRYSTAL MICROBALANCE; SURFACE; NANOPARTICLES; IMMUNOASSAY;
D O I
10.3390/s150203565
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.
引用
收藏
页码:3565 / 3574
页数:10
相关论文
共 50 条
  • [21] Improving the signal-to-noise ratio in a fiber-optic Fabry-Perot acoustic sensor
    Moradi, Flamed
    Hosseinibalam, Fahimeh
    Hassanzadeh, Smaeyl
    LASER PHYSICS LETTERS, 2019, 16 (06)
  • [22] Two-wave method of signal reconstruction in a fiber-optic sensor based on a Fabry-Perot interferometer
    Vetrov, A. A.
    Danilov, D. A.
    Komissarov, S. S.
    Kotsyubinskii, T. D.
    Sergushichev, A. N.
    JOURNAL OF OPTICAL TECHNOLOGY, 2018, 85 (02) : 106 - 109
  • [23] Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe
    Liu, Yang
    Zheng, Rongcheng
    Peng, Sisu
    Xin, Zixuan
    Xu, Guodong
    Wei, Heming
    Caucheteur, Christophe
    Hu, Xuehao
    Qu, Hang
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2025, 43 (01) : 383 - 389
  • [24] Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor
    Zhang, Y
    Shibru, H
    Cooper, KL
    Wang, AB
    OPTICS LETTERS, 2005, 30 (09) : 1021 - 1023
  • [25] Concrete strain monitoring with Fabry-Perot fiber-optic sensor
    Quirion, M
    Ballivy, G
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2000, 12 (03) : 254 - 261
  • [26] Fiber-Optic Fabry-Perot Phase Shifted Interferometer Using Modal Demultiplexing
    Chatterjee, Julius
    Grossman, Barry G.
    Earles, Susan K.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (21) : 1892 - 1895
  • [27] Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer
    Li, Jiacheng
    Qiao, Xueguang
    Wang, Ruohui
    Rong, Qiangzhou
    Bao, Weijia
    Shao, Zhihua
    Yang, Tingting
    OPTICS AND LASERS IN ENGINEERING, 2016, 79 : 16 - 21
  • [28] PMMA Microsphere-Based Fabry-Perot Fiber-Optic Humidity Sensor
    He, Xiangming
    Gong, Huaping
    Li, Weichen
    Xu, Ben
    Zhao, Chunliu
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6396 - 6403
  • [29] Miniature Fiber-Optic Microflowmeter Based on Fabry-Perot Interferometer and Carbon Nanotubes
    Liu, Weinan
    Pu, Shengli
    Duan, Simiao
    Hao, Zijian
    Zhang, Chencheng
    Wu, Qiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [30] Differential-pressure-based fiber-optic temperature sensor using Fabry-Perot interferometry
    Liu, Tiegen
    Yin, Jinde
    Jiang, Junfeng
    Liu, Kun
    Wang, Shuang
    Zou, Shengliang
    OPTICS LETTERS, 2015, 40 (06) : 1049 - 1052