Analytical study of D-dimensional fractional Klein-Gordon equation with a fractional vector plus a scalar potential

被引:5
|
作者
Das, Tapas [1 ]
Ghosh, Uttam [2 ]
Sarkar, Susmita [2 ]
Das, Shantanu [3 ]
机构
[1] Kodalia Prasanna Banga High Sch HS, South 24 Parganas, Kolkata 700146, India
[2] Univ Calcutta, Dept Appl Math, Kolkata 700009, India
[3] Bhabha Atom Res Ctr, Reactor Control Syst Design Sect E&I Grp, Mumbai 400085, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2020年 / 94卷 / 01期
关键词
Fractional Klein-Gordon equation; power series method; fractional Coulomb potential; Mittag-Leffler function;
D O I
10.1007/s12043-019-1902-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
D-dimensional fractional Klein-Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter alpha is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation
    Gepreel, Khaled A.
    Mohamed, Mohamed S.
    CHINESE PHYSICS B, 2013, 22 (01)
  • [32] Analytical solution for the dynamics and optimization of fractional Klein-Gordon equation: an application to quantum particle
    Abro, Kashif Ali
    Siyal, Ambreen
    Atangana, Abdon
    Al-Mdallal, Qasem M.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (08)
  • [33] Approximate Solution of D-Dimensional Klein-Gordon Equation with Hulthen-Type Potential via SUSYQM
    Hassanabadi, H.
    Zarrinkamar, S.
    Rahimov, H.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (03) : 423 - 428
  • [34] A Model of Modified Klein-Gordon Equation with Modified Scalar-vector Yukawa Potential
    Maireche, Abdelmadjid
    AFRICAN REVIEW OF PHYSICS, 2020, 15 : 1 - 11
  • [35] Approximate solutions of the Klein-Gordon equation with unequal scalar and vector modified Hylleraas potential
    Antia, A. D.
    Ikot, A. N.
    Akpan, I. O.
    Awoga, O. A.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (02) : 155 - 160
  • [36] Fractional Klein-Gordon equation on AdS2+1
    Basteiro, Pablo
    Elfert, Janine
    Erdmenger, Johanna
    Hinrichsen, Haye
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (36)
  • [37] Analytical solutions of the Klein-Gordon equation with a combined potential
    Onate, C. A.
    Onyeaju, M. C.
    Ikot, A. N.
    Ojonubah, J. O.
    CHINESE JOURNAL OF PHYSICS, 2016, 54 (05) : 820 - 829
  • [38] NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN-GORDON EQUATION WITH β-FRACTIONAL DERIVATIVE
    Wang, Kangle
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (01)
  • [39] An energy-preserving computational approach for the semilinear space fractional damped Klein-Gordon equation with a generalized scalar potential
    Hendy, Ahmed S.
    Taha, T. R.
    Suragan, D.
    Zaky, Mahmoud A.
    APPLIED MATHEMATICAL MODELLING, 2022, 108 : 512 - 530
  • [40] Exact analytical solution to the relativistic Klein-Gordon equation with noncentral equal scalar and vector potentials
    Yasuk, F.
    Durmus, A.
    Boztosun, I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)