Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation

被引:43
|
作者
Gepreel, Khaled A. [1 ,2 ]
Mohamed, Mohamed S. [2 ,3 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
[2] Taif Univ, Dept Math, Fac Sci, At Taif, Saudi Arabia
[3] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
关键词
homotopy analysis method; nonlinear space-time fractional Klein-Gordon equation; Caputo derivative; ADOMIAN DECOMPOSITION; DIFFERENTIAL-EQUATION; ORDER;
D O I
10.1088/1674-1056/22/1/010201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein-Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Analytical approximate solution for nonlinear space-time fractional Klein Gordon equation
    Khaled A. Gepreel
    Mohamed S. Mohameda
    [J]. Chinese Physics B, 2013, 22 (01) : 33 - 38
  • [2] Analytical approach for space-time fractional Klein-Gordon equation
    Unsal, Omer
    Guner, Ozkan
    Bekir, Ahmet
    [J]. OPTIK, 2017, 135 : 337 - 345
  • [3] Klein-Gordon equation in curved space-time
    Lehn, R. D.
    Chabysheva, S. S.
    Hiller, J. R.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (04)
  • [4] A space-time spectral method for solving the nonlinear Klein-Gordon equation
    Wu, Hua
    Gao, Qiyi
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 190 : 110 - 137
  • [5] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    [J]. SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [6] Numerical Solution of Space-Time Fractional Klein-Gordon Equation by Radial Basis Functions and Chebyshev Polynomials
    Bansu H.
    Kumar S.
    [J]. International Journal of Applied and Computational Mathematics, 2021, 7 (5)
  • [7] Solution of the Klein-Gordon equation in a 2+1 curved space-time
    Harriott, TA
    Williams, JG
    [J]. MODERN PHYSICS LETTERS A, 2001, 16 (18) : 1151 - 1156
  • [8] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [9] Analytic solutions of the space-time conformable fractional Klein-Gordon equation in general form
    Culha, Sevil
    Dascioglu, Aysegul
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (04) : 775 - 790
  • [10] Approximate Solution of Nonlinear Klein-Gordon Equation Using Sobolev Gradients
    Raza, Nauman
    Butt, Asma Rashid
    Javid, Ahmad
    [J]. JOURNAL OF FUNCTION SPACES, 2016, 2016