Towards the atomic-scale fabrication of a silicon-based solid state quantum computer

被引:26
|
作者
Simmons, MY [1 ]
Schofield, SR [1 ]
O'Brien, JL [1 ]
Curson, NJ [1 ]
Oberbeck, L [1 ]
Hallam, T [1 ]
Clark, RG [1 ]
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
关键词
scanning tunneling microscopy; molecular beam epitaxy; adsorption kinetics; surface diffusion; electrical transport (conductivity; resistivity; mobility; etc.); silicon; phosphine; solid gas interfaces;
D O I
10.1016/S0039-6028(03)00485-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The construction of a scalable quantum computer in silicon, using single phosphorus atoms as qubits, presents a significant technological challenge. This paper describes recent results from a 'bottom-up' strategy to incorporate individual phosphorus atoms in silicon with atomic precision using a combination of advanced scanning tunnelling lithography techniques followed by low temperature silicon molecular beam epitaxial overgrowth. To date we have demonstrated (i) placement of individual phosphorus molecules at predetermined sites in the silicon surface using a hydrogen resist strategy, (ii) spatially controlled phosphorus incorporation into the silicon surface, (iii) minimisation of surface segregation by low temperature silicon encapsulation and (iv) complete electrical activation of the donors. Whilst these results bode well for the fabrication of silicon devices with atomically precise dopant profiles, we discuss the challenges that remain before a few qubit P in Si quantum computer prototype can be realised. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1209 / 1218
页数:10
相关论文
共 50 条
  • [41] ATOMIC-SCALE ANALYSIS OF QUANTUM NANOSTRUCTURES WITH THE STM
    JOHNSON, MB
    PFISTER, M
    ALVARADO, SF
    SALEMINK, HWM
    [J]. MICROELECTRONIC ENGINEERING, 1995, 27 (1-4) : 31 - 34
  • [42] Atomic-scale simulations of multiple ion–solid interactions and structural evolution in silicon carbide
    F. Gao
    W. J. Weber
    [J]. Journal of Materials Research, 2002, 17 : 259 - 262
  • [43] Atomic-Scale, All Epitaxial In-Plane Gated Donor Quantum Dot in Silicon
    Fuhrer, A.
    Fuechsle, M.
    Reusch, T. C. G.
    Weber, B.
    Simmons, M. Y.
    [J]. NANO LETTERS, 2009, 9 (02) : 707 - 710
  • [44] A Comparative Efficiency Study of Silicon-based Solid State Transformers
    Qin, Hengsi
    Kimball, Jonathan W.
    [J]. 2010 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, 2010, : 1458 - 1463
  • [45] Multilevel Atomic-Scale Transistors Based on Metallic Quantum Point Contacts
    Xie, Fangqing
    Maul, Robert
    Obermair, Christian
    Wenzel, Wolfgang
    Schoen, Gerd
    Schimmel, Thomas
    [J]. ADVANCED MATERIALS, 2010, 22 (18) : 2033 - +
  • [46] Marking out atomic-scale devices FABRICATION & PROCESSING
    Wood, Jonathan
    [J]. MATERIALS TODAY, 2004, 7 (12) : 18 - 18
  • [47] FABRICATION OF ATOMIC-SCALE STRUCTURES ON SI(001) SURFACES
    SALLING, CT
    LAGALLY, MG
    [J]. SCIENCE, 1994, 265 (5171) : 502 - 506
  • [48] Silicon-based Quantum Computation
    Simmons, Stephanie
    [J]. 2013 INTERNATIONAL CONFERENCE ON IC DESIGN AND TECHNOLOGY (ICICDT), 2013, : 109 - 114
  • [49] Silicon-based quantum computation
    Kane, BE
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (9-11): : 1023 - 1041
  • [50] Fabrication of a silicon-based superfluid oscillator
    Schwab, K
    Steinhauer, J
    Davis, JC
    Packard, RE
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1996, 5 (03) : 180 - 186