Energy Conversion and Partition in the Asymmetric Reconnection Diffusion Region

被引:18
|
作者
Wang, Shan [1 ,2 ]
Chen, Li-Jen [1 ,2 ]
Bessho, Naoki [1 ,2 ]
Hesse, Michael [3 ,4 ]
Yoo, Jongsoo [5 ]
Yamada, Masaaki [5 ]
Liu, Yi-Hsin [6 ]
Gershman, Danial J. [2 ]
Giles, Barbara L. [2 ]
Moore, Thomas E. [2 ]
机构
[1] Univ Maryland, Astron Dept, College Pk, MD 20742 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Univ Bergen, Dept Phys & Technol, Bergen, Norway
[4] Southwest Res Inst San Antonio, San Antonio, TX USA
[5] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[6] Dartmouth Coll, Hanover, NH 03755 USA
关键词
COLLISIONLESS MAGNETIC RECONNECTION; EARTHS MAGNETOPAUSE DEPENDENCE; INFLOW ALFVEN SPEED; GUIDE-FIELD; ELECTRON ENERGIZATION; ION DIFFUSION; ACCELERATION; MMS; MECHANISM; COMPONENT;
D O I
10.1029/2018JA025519
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the energy conversion and partition in the asymmetric reconnection diffusion region using two-dimensional particle-in-cell simulations and Magnetosphere Multiscale (MMS) mission observations. Under an upstream condition with equal temperatures in the two inflow regions, the simulation analysis indicates that the energy partition between ions and electrons depends on the distance from the X-line. Within the central electron diffusion region (EDR), nearly all dissipated electromagnetic field energies are converted to electrons. From the EDR to the ion diffusion region (IDR) scales, the rate of the electron energy gain decreases to be lower than that of ions. A magnetopause reconnection event inside the IDR observed by MMS shows comparable ion and electron energy gains, consistent with the simulation result in the transition region from EDR to IDR. At the EDR scale, the electron energization is mainly by the reconnection electric field (E-r); in-plane electric fields (E-xz) provide additional positive contributions near the X-line and do negative work on electrons beyond the EDR. The guide field reduces the electron energization by both E-r and E-xz in the EDR. For ion energization, E-r and E-xz have comparable contributions near the time of the peak reconnection rate, while E-xz dominants at later time. At the IDR scale, the guide field causes asymmetry in the amount of the energy gain and energization mechanisms between two exhausts but does not have significant effects on energy partition. Our study advances understanding of ion and electron energization in asymmetric reconnect IDRs.
引用
收藏
页码:8185 / 8205
页数:21
相关论文
共 50 条
  • [41] The Effect of a Guide Field on Local Energy Conversion During Asymmetric Magnetic Reconnection: Particle-in-Cell Simulations
    Cassak, P. A.
    Genestreti, K. J.
    Burch, J. L.
    Phan, T. -D.
    Shay, M. A.
    Swisdak, M.
    Drake, J. F.
    Price, L.
    Eriksson, S.
    Ergun, R. E.
    Anderson, B. J.
    Merkin, V. G.
    Komar, C. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (11) : 11523 - 11542
  • [42] Enhanced Energy Conversion by Turbulence in Collisionless Magnetic Reconnection
    Jin, Runqing
    Zhou, Meng
    Yi, Yongyuan
    Man, Hengyan
    Zhong, Zhihong
    Pang, Ye
    Deng, Xiaohua
    ASTROPHYSICAL JOURNAL, 2024, 965 (01):
  • [43] On the Energy Conversion Rate during Collisionless Magnetic Reconnection
    Yi, Yongyuan
    Zhou, Meng
    Song, Liangjin
    Deng, Xiaohua
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 883 (01)
  • [44] Kinetic Structure of the Electron Diffusion Region in Antiparallel Magnetic Reconnection
    Ng, J.
    Egedal, J.
    Le, A.
    Daughton, W.
    Chen, L. -J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (06)
  • [45] Simulations of energy conversion and partition at dipolarization front
    Huang HongTao
    Yu YiQun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (07): : 2412 - 2420
  • [46] Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events
    Webster, J. M.
    Burch, J. L.
    Reiff, P. H.
    Daou, A. G.
    Genestreti, K. J.
    Graham, D. B.
    Torbert, R. B.
    Ergun, R. E.
    Sazykin, S. Y.
    Marshall, A.
    Allen, R. C.
    Chen, L. -J.
    Wang, S.
    Phan, T. D.
    Giles, B. L.
    Moore, T. E.
    Fuselier, S. A.
    Cozzani, G.
    Russell, C. T.
    Eriksson, S.
    Rager, A. C.
    Broll, J. M.
    Goodrich, K.
    Wilder, F.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (06) : 4858 - 4878
  • [47] Particle description of the electron diffusion region in collisionless magnetic reconnection
    Fujimoto, Keizo
    Sydora, Richard D.
    PHYSICS OF PLASMAS, 2009, 16 (11) : 112309
  • [48] Electron Vorticity Indicative of the Electron Diffusion Region of Magnetic Reconnection
    Hwang, K. -J.
    Choi, E.
    Dokgo, K.
    Burch, J. L.
    Sibeck, D. G.
    Giles, B. L.
    Goldstein, M. L.
    Paterson, W. R.
    Pollock, C. J.
    Shi, Q. Q.
    Fu, H.
    Hasegawa, H.
    Gershman, D. J.
    Khotyaintsev, Y.
    Torbert, R. B.
    Ergun, R. E.
    Dorelli, J. C.
    Avanov, L.
    Russell, C. T.
    Strangeway, R. J.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (12) : 6287 - 6296
  • [49] Capsule Electron Distributions Near the Diffusion Region of Magnetic Reconnection
    Ren, Yong
    Dai, Lei
    Wang, Chi
    Lavraud, Benoit
    Escoubet, C. Philippe
    Burch, James L.
    Geophysical Research Letters, 2024, 51 (23)
  • [50] Two-dimensional MHD model of the reconnection diffusion region
    Erkaev, NV
    Semenov, VS
    Biernat, HK
    NONLINEAR PROCESSES IN GEOPHYSICS, 2002, 9 (02) : 131 - 138