Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems

被引:40
|
作者
Riviere, Beatrice
Shaw, Simon
Whiteman, J. R. [1 ]
机构
[1] Brunel Univ, Brunel Inst Computat Math, Uxbridge UB8 3PH, Middx, England
[2] Univ Pittsburgh, Dept Math, Computat Math Grp, Pittsburgh, PA 15260 USA
关键词
viscoelasticity; finite element method; discontinuous Galerkin method; a priori error estimates;
D O I
10.1002/num.20215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the usual linear elastodynamics equations augmented with evolution equations for viscoelastic internal stresses. A fully discrete approximation is defined, based on a spatially symmetric or non-symmetric interior penalty discontinuous Galerkin finite element method, and a displacement-velocity centred difference time discretisation. An a priori error estimate is given but only the main ideas in the proof of the error estimate are reported here due to the large number of (mostly technical) estimates that are required. The full details are referenced to a technical report. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1149 / 1166
页数:18
相关论文
共 50 条
  • [21] Analysis of mixed finite element methods for the standard linear solid model in viscoelasticity
    Lee, Jeonghun J.
    CALCOLO, 2017, 54 (02) : 587 - 607
  • [22] Galerkin finite element methods for wave problems
    Sengupta, TK
    Talla, SB
    Pradhan, SC
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2005, 30 (5): : 611 - 623
  • [23] Finite element theory on curved domains with applications to discontinuous Galerkin finite element methods
    Kawecki, Ellya L.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1492 - 1536
  • [24] Galerkin finite element methods for wave problems
    T. K. Sengupta
    S. B. Talla
    S. C. Pradhan
    Sadhana, 2005, 30 : 611 - 623
  • [25] A locking-free conforming discontinuous Galerkin finite element method for linear elasticity problems
    Huo, Fuchang
    Mo, Weilong
    Zhang, Yulin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 465
  • [26] A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods
    Lin, Guang
    Liu, Jiangguo
    Sadre-Marandi, Farrah
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 346 - 362
  • [27] On the coupling of local discontinuous Galerkin and conforming finite element methods
    Perugia I.
    Schötzau D.
    Journal of Scientific Computing, 2001, 16 (4) : 411 - 433
  • [28] Parallel iterative discontinuous Galerkin finite-element methods
    Aharoni, D
    Barak, A
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 247 - 254
  • [29] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 354 - 403
  • [30] DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NUMERICAL SIMULATIONS OF THERMOELASTICITY
    Hao, Zeng-rong
    Gu, Chun-wei
    Song, Yin
    JOURNAL OF THERMAL STRESSES, 2015, 38 (09) : 983 - 1004