Agglomerative hierarchical clustering of airborne electromagnetic data for multi-scale geological studies

被引:16
|
作者
Dumont, M. [1 ,2 ]
Reninger, P. A. [3 ]
Pryet, A. [4 ,5 ]
Martelet, G. [3 ]
Aunay, B. [2 ]
Join, J. L. [1 ]
机构
[1] Univ La Reunion, Lab Geosci, Inst Phys Globe Paris, CNRS,UMR 7154,Sorbonne Paris Cite, F-97744 St Denis, Reunion, France
[2] Bur Rech Geol & Minieres, St Denis, La Reunion, France
[3] Bur Rech Geol & Minieres, UMR 7327, BP 36009, F-45060 Orleans, France
[4] Bordeaux INP, EA Georessources & Environm 4592, Pessac, France
[5] Univ Bordeaux Montaigne, Pessac, France
关键词
Airborne electromagnetics; Agglomerative hierarchical clustering; Multi-scale study; Hydrogeology; Volcanic setting; Saltwater intrusion; LA FOURNAISE VOLCANO; DES-NEIGES-VOLCANO; REUNION ISLAND; INDIAN-OCEAN; CONSTRAINED INVERSION; TEM DATA; PITON; GROUNDWATER; RESOLUTION; EVOLUTION;
D O I
10.1016/j.jappgeo.2018.06.020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Airborne electromagnetic methods provide detailed subsurface resistivity imaging over extensive areas. The inversion of electromagnetic measurements can be conducted with a quasi-3D spatially constrained inversion scheme, which yields numerous vertical resistivity soundings. So as to conduct the interpretation, these soundings can be interpolated to obtain a 3D resistivity model. However, large surveys result in huge resistivity models, which can be challenging to interpret with 2D or even 3D views. We propose a complementary approach for the interpretation of airborne electromagnetic surveys based on agglomerative hierarchical clustering. With this statistical classification method, the numerous 1D vertical resistivity profiles distributed over the area of interest can be summarized in a 2D horizontal map. Inverted electromagnetic soundings are aggregated into clusters according to their vertical resistivity profiles. These clusters define areas with a consistent vertical resistivity response, i.e. to the first order, areas with comparable vertical (hydro)-geological structure. The clustering method is illustrated with an extensive airborne electromagnetic survey conducted over Reunion Island. After a description of the method, we show that the proposed classification facilitates the confrontation between airborne geophysical results and geological or hydrogeological observations/data. We highlight that hierarchical clustering is of high interest for multi-scale studies, from regional to local scales. This approach introduces a new way to use geophysical surveys to map areas with specific geological/hydrogeological behaviors. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Classifying airborne radiometry data with Agglomerative Hierarchical Clustering:: A tool for geological mapping in context of rainforest (French Guiana)
    Martelet, G.
    Truffert, C.
    Tourliere, B.
    Ledru, P.
    Perrin, J.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2006, 8 (03) : 208 - 223
  • [2] Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany
    Steuer, Annika
    Smirnova, Maria
    Becken, Michael
    Schiffler, Markus
    Gunther, Thomas
    Rochlitz, Raphael
    Yogeshwar, Pritam
    Moerbe, Wiebke
    Siemon, Bernhard
    Costabel, Stephan
    Preugschat, Benedikt
    Ibs-von Seht, Malte
    Zampa, Luigi Sante
    Mueller, Franz
    JOURNAL OF APPLIED GEOPHYSICS, 2020, 182
  • [3] Agglomerative hierarchical clustering for data with tolerance
    Yasunori, Endo
    Yukihiro, Hamasuna
    Sadaaki, Miyamoto
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 404 - 409
  • [4] Agglomerative Hierarchical Kernel Spectral Data Clustering
    Mall, Raghvendra
    Langone, Rocco
    Suykens, Johan A. K.
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 9 - 16
  • [5] Agglomerative hierarchical clustering for nonlinear data analysis
    Wattanachon, U
    Lursinsap, C
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 1420 - 1425
  • [6] Parallel Hierarchical Agglomerative Clustering for fMRI Data
    Angeletti, Melodie
    Bonny, Jean-Marie
    Durif, Franck
    Koko, Jonas
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I, 2018, 10777 : 265 - 275
  • [7] Application of Agglomerative Hierarchical Clustering for Clustering of Time Series Data
    Radovanovic, Ana
    Li, Junshi
    Milanovic, Jovica, V
    Milosavljevic, Nina
    Storchi, Riccardo
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 640 - 644
  • [8] An automated spectral clustering for multi-scale data
    Afzalan, Milad
    Jazizadeh, Farrokh
    NEUROCOMPUTING, 2019, 347 : 94 - 108
  • [9] ACCELERATING THE HIERARCHICAL MULTI-SCALE SOFTWARE BY SPATIAL CLUSTERING STRATEGIES
    Kuairullah, Md
    Gawad, Jerzy
    Roose, Dirk
    Van Bael, Albert
    COMPUTATIONAL PLASTICITY XIII: FUNDAMENTALS AND APPLICATIONS, 2015, : 932 - 943
  • [10] Hierarchical Fiber Clustering Based on Multi-scale Neuroanatomical Features
    Wang, Qian
    Yap, Pew-Thian
    Jia, Hongjun
    Wu, Guorong
    Shen, Dinggang
    MEDICAL IMAGING AND AUGMENTED REALITY, 2010, 6326 : 448 - +