ON NONPARAMETRIC CLASSIFICATION FOR WEAKLY DEPENDENT FUNCTIONAL PROCESSES

被引:5
|
作者
Younso, Ahmad [1 ]
机构
[1] Damascus Univ, Dept Math Stat, Fac Sci, Damascus, Syria
关键词
Bayes rule; training data; moving window rule; mixing condition; consistency; CENTRAL-LIMIT-THEOREM; REGRESSION; CONVERGENCE;
D O I
10.1051/ps/2017002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this paper is to investigate the moving window rule of classification to classify functions under mixing conditions. We consider a random variable X taking values in a metric space (F, rho) with label Y is an element of{0, 1}. We extend some results on consistency and strong consistency of the moving window rule from the i.i.d. case to the weakly dependent case under mild assumptions. The practical use of the moving window rule will be illustrated through a simulation study. The performance of the moving window rule is investigated.
引用
收藏
页码:452 / 466
页数:15
相关论文
共 50 条
  • [31] Asymptotic normality of robust nonparametric estimator for functional dependent data
    Attouch, Mohammed
    Laksaci, Ali
    Ould-Said, Elias
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 31 - +
  • [32] Nonparametric regression estimation for dependent functional data: asymptotic normality
    Masry, E
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (01) : 155 - 177
  • [33] Nonparametric estimation of conditional quantiles for functional and spatial dependent variables
    Laksaci, Ali
    Maref, Fouzia
    [J]. COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) : 1075 - 1080
  • [34] Consistency of the recursive nonparametric regression estimation for dependent functional data
    Amiri, Aboubacar
    Thiam, Baba
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (03) : 471 - 487
  • [35] MODERATE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES
    JIANG, TF
    WANG, XC
    RAO, MB
    [J]. STATISTICS & PROBABILITY LETTERS, 1992, 15 (01) : 71 - 76
  • [36] A Quantile-based Test for Symmetry of Weakly Dependent Processes
    Psaradakis, Zacharias
    Vavra, Marian
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2015, 36 (04) : 587 - 598
  • [37] LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES
    BURTON, RM
    DEHLING, H
    [J]. STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) : 397 - 401
  • [38] SMOOTHED BLOCK EMPIRICAL LIKELIHOOD FOR QUANTILES OF WEAKLY DEPENDENT PROCESSES
    Chen, Song Xi
    Wong, Chiu Min
    [J]. STATISTICA SINICA, 2009, 19 (01) : 71 - 81
  • [39] Bayesian Nonparametric Relational Topic Model through Dependent Gamma Processes
    Xuan, Junyu
    Lu, Jie
    Zhang, Guangquan
    Xu, Richard Yi Da
    Luo, Xiangfeng
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (07) : 1357 - 1369
  • [40] Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes
    Holger Dette
    Martin Kroll
    [J]. Annals of the Institute of Statistical Mathematics, 2022, 74 : 1163 - 1196