A NEW FRAMEWORK FOR AUTOMATED SEGMENTATION OF LEFT VENTRICLE WALL FROM CONTRAST ENHANCED CARDIAC MAGNETIC RESONANCE IMAGES

被引:0
|
作者
Elnakib, Ahmed [1 ]
Beache, Garth M. [2 ]
Gimel'farb, Georgy [3 ]
El-Baz, Ayman [1 ]
机构
[1] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[2] Univ Louisville, Sch Med, Dept Diagnost Radiol, Louisville, KY 40292 USA
[3] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
关键词
Left Ventricle; Segmentation; Contrast Enhanced Cardiac Magnetic Resonance Images; Markov-Gibbs Random Field;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1st-order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2nd-order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Automated quantification of myocardial perfusion based on segmentation and non-rigid registration of contrast-enhanced cardiac magnetic resonance images
    Giacomo Tarroni
    Cristiana Corsi
    Federico Veronesi
    James Walter
    Claudio Lamberti
    Roberto M Lang
    Victor Mor-Avi
    Amit R Patel
    Journal of Cardiovascular Magnetic Resonance, 13 (Suppl 1)
  • [32] Segmentation of cardiac magnetic resonance cine images of single ventricle: including or excluding the accessorial ventricle?
    Secchi, Francesco
    Resta, Elda Chiara
    Di Leo, Giovanni
    Petrini, Marcello
    Messina, Carmelo
    Carminati, Mario
    Sardanelli, Francesco
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2014, 30 (06): : 1117 - 1124
  • [33] Segmentation of cardiac magnetic resonance cine images of single ventricle: including or excluding the accessorial ventricle?
    Francesco Secchi
    Elda Chiara Resta
    Giovanni Di Leo
    Marcello Petrini
    Carmelo Messina
    Mario Carminati
    Francesco Sardanelli
    The International Journal of Cardiovascular Imaging, 2014, 30 : 1117 - 1124
  • [34] New automated Markov-Gibbs random field based framework for myocardial wall viability quantification on agent enhanced cardiac magnetic resonance images
    Elnakib, Ahmed
    Beache, Garth M.
    Gimel'farb, Georgy
    El-Baz, Ayman
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2012, 28 (07): : 1683 - 1698
  • [35] Residual learning: A new paradigm to improve deep learning-based segmentation of the left ventricle in magnetic resonance imaging cardiac images
    Zarvani, Maral
    Saberi, Sara
    Azmi, Reza
    Shojaedini, Seyed Vahab
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2021, 11 (03): : 159 - 168
  • [36] A NEW SHAPE-BASED FRAMEWORK FOR THE LEFT VENTRICLE WALL SEGMENTATION FROM CARDIAC FIRST-PASS PERFUSION MRI
    Khalifa, F.
    Beache, G. M.
    Elnakib, A.
    Sliman, H.
    Gimel'farb, G.
    Welch, K. C.
    El-Baz, A.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 41 - 44
  • [37] A kidney segmentation framework for Dynamic Contrast Enhanced Magnetic Resonance Imaging
    Yuksel, Seniha E.
    El-Baz, Ayman
    Farag, Aly A.
    El-Ghar, Mohamed
    Eldiasty, Tarek
    Ghoneim, Mohamed A.
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1505 - 1516
  • [38] Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
    De Santi, Lisa Anita
    Meloni, Antonella
    Santarelli, Maria Filomena
    Pistoia, Laura
    Spasiano, Anna
    Casini, Tommaso
    Putti, Maria Caterina
    Cuccia, Liana
    Cademartiri, Filippo
    Positano, Vincenzo
    SENSORS, 2023, 23 (06)
  • [39] Segmentation and visualization of left ventricle in MR Cardiac images
    Shin, IH
    Kwon, MJ
    Chung, ST
    Park, HW
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 89 - 92
  • [40] Deep learning myocardial infarction segmentation framework from cardiac magnetic resonance images
    Al-antari, Mugahed A.
    Shaaf, Zakarya Farea
    Jamil, M. Mahadi Abdul
    Samee, Nagwan Abdel
    Alkanhel, Reem
    Talo, Muhammed
    Al -Huda, Zaid
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89