A NEW FRAMEWORK FOR AUTOMATED SEGMENTATION OF LEFT VENTRICLE WALL FROM CONTRAST ENHANCED CARDIAC MAGNETIC RESONANCE IMAGES

被引:0
|
作者
Elnakib, Ahmed [1 ]
Beache, Garth M. [2 ]
Gimel'farb, Georgy [3 ]
El-Baz, Ayman [1 ]
机构
[1] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[2] Univ Louisville, Sch Med, Dept Diagnost Radiol, Louisville, KY 40292 USA
[3] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
关键词
Left Ventricle; Segmentation; Contrast Enhanced Cardiac Magnetic Resonance Images; Markov-Gibbs Random Field;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1st-order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2nd-order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Automated segmentation of the left ventricle in cardiac MRI
    Kaus, MR
    von Berg, J
    Weese, R
    Niessen, W
    Pekar, V
    MEDICAL IMAGE ANALYSIS, 2004, 8 (03) : 245 - 254
  • [22] A review on left ventricle segmentation and quantification by cardiac magnetic resonance images using convolutional neural networks
    Shaaf, Zakarya Farea
    Jamil, Muhammad Mahadi Abdul
    Ambar, Radzi
    MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 15 (03) : 273 - 292
  • [23] A New Technique for Reducing the Segmentation Error of Left Ventricle Contours using Magnetic Resonance Images
    Khan, Amjad
    Iskandar, Dayang Nurfatimah Awang
    Chai, Wang Yin
    Chin, Lim Phei
    Proceedings - 2021 International Conference on Frontiers of Information Technology, FIT 2021, 2021, : 269 - 274
  • [24] A New Technique for Reducing the Segmentation Error of Left Ventricle Contours using Magnetic Resonance Images
    Khan, Amjad
    Iskandar, Dayang NurFatimah Awang
    Chai, Wang Yin
    Chin, Lim Phei
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 269 - 274
  • [25] Segmentation of the left ventricle in cardiac MR images
    Jolly, MP
    Duta, N
    Funka-Lea, G
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, 2001, : 501 - 508
  • [26] New automated Markov–Gibbs random field based framework for myocardial wall viability quantification on agent enhanced cardiac magnetic resonance images
    Ahmed Elnakib
    Garth M. Beache
    Georgy Gimel’farb
    Ayman El-Baz
    The International Journal of Cardiovascular Imaging, 2012, 28 : 1683 - 1698
  • [27] Segmenting the endocardial border of the left ventricle in cardiac magnetic resonance images
    El-Messiry, H
    Kestler, HA
    Grebe, O
    Neumann, H
    COMPUTERS IN CARDIOLOGY 2003, VOL 30, 2003, 30 : 625 - 628
  • [28] AnnularCut: a graph-cut design for left ventricle segmentation from magnetic resonance images
    Dakua, Sarada Prasad
    IET IMAGE PROCESSING, 2014, 8 (01) : 1 - 11
  • [29] Automatic Segmentation of Left Atrial Geometry from Contrast-Enhanced Magnetic Resonance Images Using a Probabilistic Atlas
    Karim, R.
    Juli, C.
    Malcolme-Lawes, L.
    Wyn-Davies, D.
    Kanagaratnam, P.
    Peters, N.
    Rueckert, D.
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART, 2010, 6364 : 134 - +
  • [30] Automatic Left Atrial Wall Segmentation from Contrast-Enhanced CT Angiography Images
    Tao, Qian
    Shahzad, Rahil
    Berendsen, Floris F.
    van der Geest, Rob J.
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: IMAGING AND MODELLING CHALLENGES, 2016, 2017, 10124 : 220 - 227