A NEW FRAMEWORK FOR AUTOMATED SEGMENTATION OF LEFT VENTRICLE WALL FROM CONTRAST ENHANCED CARDIAC MAGNETIC RESONANCE IMAGES

被引:0
|
作者
Elnakib, Ahmed [1 ]
Beache, Garth M. [2 ]
Gimel'farb, Georgy [3 ]
El-Baz, Ayman [1 ]
机构
[1] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[2] Univ Louisville, Sch Med, Dept Diagnost Radiol, Louisville, KY 40292 USA
[3] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
关键词
Left Ventricle; Segmentation; Contrast Enhanced Cardiac Magnetic Resonance Images; Markov-Gibbs Random Field;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1st-order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2nd-order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Automated segmentation of the left ventricle including papillary muscles in cardiac magnetic resonance images
    El Berbari, R.
    Bloch, I.
    Redheuil, A.
    Angelini, E. D.
    Mousseaux, E.
    Frouin, F.
    Herment, A.
    [J]. FUNCTIONAL IMAGING AND MODELING OF THE HEART, PROCEEDINGS, 2007, 4466 : 453 - +
  • [2] A NEW FRAMEWORK FOR AUTOMATED IDENTIFICATION OF PATHOLOGICAL TISSUES IN CONTRAST ENHANCED CARDIAC MAGNETIC RESONANCE IMAGES
    Elnakib, Ahmed
    Beache, Garth M.
    Nitzken, M.
    Gimel'farb, Georgy
    Ei-Baz, Ayman
    [J]. 2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1272 - 1275
  • [3] Towards Left Ventricle Segmentation From Magnetic Resonance Images
    Dakua, Sarada Prasad
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (18) : 5971 - 5981
  • [4] Method for segmentation of the endocardium and epicardium of the left ventricle in cardiac magnetic resonance images
    Wang, Yuan-Quan
    Jia, Yun-De
    [J]. Ruan Jian Xue Bao/Journal of Software, 2009, 20 (05): : 1176 - 1184
  • [5] Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network
    He, Yangsu
    Qin, Wenjian
    Wu, Yin
    Zhang, Mengxi
    Yang, Yongfeng
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    Hu, Zhanli
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (03) : 541 - 553
  • [6] Automated segmentation of left ventricle in cine cardiac mr images
    YingLi Lu
    Perry Radau
    Kim A Connelly
    Alexander Dick
    Graham A Wright
    [J]. Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [7] Automatic Left Ventricle Segmentation in Cardiac Magnetic Resonance Images via Threshold Selection
    Xiong, Jingjing
    Yang, Yongming
    Wang, Zhenzhou
    [J]. 2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1653 - 1658
  • [8] Accurate Segmentation Framework for the Left Ventricle Wall from Cardiac Cine MRI
    Sliman, H.
    Khalifa, F.
    Elnakib, A.
    Soliman, A.
    Beache, G. M.
    Gimel'farb, G.
    Emam, A.
    Elmaghraby, A.
    El-Baz, A.
    [J]. 2013 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES, 2013, 1559 : 287 - 296
  • [9] Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images
    Yang, Xulei
    Song, Qing
    Su, Yi
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (09) : 1563 - 1577
  • [10] Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images
    Xulei Yang
    Qing Song
    Yi Su
    [J]. Medical & Biological Engineering & Computing, 2017, 55 : 1563 - 1577