Improvements on the hybrid Monte Carlo algorithms for matrix computations

被引:0
|
作者
Fathi-Vajargah, Behrouz [1 ]
Hassanzadeh, Zeinab [2 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Stat, POB 41335-19141, Rasht, Iran
[2] Univ Guilan, Fac Math Sci, Dept Appl Math, POB 41335-19141, Rasht, Iran
关键词
System of linear algebraic equations; Markov chain Monte Carlo; convergence analysis; transition probability; matrix inversion;
D O I
10.1007/s12046-018-0983-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present some improvements on the Markov chain Monte Carlo and hybrid Markov chain Monte Carlo algorithms for matrix computations. We discuss the convergence of the Monte Carlo method using the Ulam-von Neumann approach related to selecting the transition probability matrix. Specifically, we show that if the norm of the iteration matrix T is less than 1 then the Monte Carlo Almost Optimal method is convergent. Moreover, we suggest a new technique to approximate the inverse of the strictly diagonally dominant matrix and we exert some modifications and corrections on the hybrid Monte Carlo algorithm to obtain the inverse matrix in general. Finally, numerical experiments are discussed to illustrate the efficiency of the theoretical results.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Updating Monte Carlo algorithms
    deFelicio, JRD
    Libero, VL
    AMERICAN JOURNAL OF PHYSICS, 1996, 64 (10) : 1281 - 1285
  • [42] Introduction to Monte Carlo algorithms
    Krauth, W
    ADVANCES IN COMPUTER SIMULATION, 1998, 501 : 1 - 35
  • [43] Population Monte Carlo algorithms
    Iba, Yukito
    2001, Japanese Society for Artificial Intelligence, OS Bldg #402, Tsukudo-cho, Shinjuku-ku, Tokyo, 162-082, Japan (16)
  • [44] Monte Carlo-Algorithms
    Thaele, Chr.
    ELEMENTE DER MATHEMATIK, 2014, 69 (03) : 167 - 168
  • [45] Improvements in Monte Carlo denoising based on batching
    Deasy, J
    El Naqal, I
    Kawrakow, I
    Siebers, J
    Wickerhauser, M
    Vicic, M
    Fippel, M
    MEDICAL PHYSICS, 2004, 31 (06) : 1731 - 1731
  • [46] Energy Performance Evaluation of Quasi-Monte Carlo Algorithms on Hybrid HPC
    Atanassov, E.
    Gurov, T.
    Karaivanova, A.
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 172 - 181
  • [47] Transition matrix Monte Carlo
    Swendsen, RH
    Diggs, B
    Wang, JS
    Li, ST
    Genovese, C
    Kadane, JB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (08): : 1563 - 1569
  • [48] Non-Hamiltonian Hybrid Monte Carlo algorithms for biophysical systems.
    Eleftheriou, M
    Martyna, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U525 - U525
  • [49] Parallel algorithms for certain matrix computations
    Codenotti, B
    Datta, BN
    Datta, K
    Leoncini, M
    THEORETICAL COMPUTER SCIENCE, 1997, 180 (1-2) : 287 - 308
  • [50] Recursive algorithms of parallel matrix computations
    Sukhov, EG
    AUTOMATION AND REMOTE CONTROL, 2001, 62 (11) : 1924 - 1929