Energy Performance Evaluation of Quasi-Monte Carlo Algorithms on Hybrid HPC

被引:0
|
作者
Atanassov, E. [1 ]
Gurov, T. [1 ]
Karaivanova, A. [1 ]
机构
[1] IICT BAS, Acad G Bonchev St,Bl 25A, Sofia 1113, Bulgaria
来源
LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015 | 2015年 / 9374卷
关键词
Quasi-Monte Carlo algorithms; Hybrid HPC systems; Energy efficiency; CARRIER EXCITATIONS; EVOLUTION;
D O I
10.1007/978-3-319-26520-9_18
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The increasing demands of scientific applications and the increasing capacity of modern computing systems lead to the need of evaluating energy consumption and, consequently, to the development of energy efficient algorithms. In this paper we study the energy performance of a class of quasi-Monte Carlo algorithms on hybrid HPC systems. These algorithms are applied to solve quantum kinetic integral equations using Sobol and Halton sequences. The energy performance results are compared on a CPU-based computer platform and computer platforms with accelerators like GPU cards and Intel Xeon Phi coprocessors with respect to several metrics. Directions for future work are also given.
引用
收藏
页码:172 / 181
页数:10
相关论文
共 50 条
  • [1] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [2] Energy Study of Monte Carlo and Quasi-Monte Carlo Algorithms for Solving Integral Equations
    Gurov, Todor
    Karaivanova, Aneta
    Alexandrov, Vassil
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1897 - 1905
  • [3] On the Parallel Implementation of Quasi-Monte Carlo Algorithms
    Atanassov, E.
    Gurov, T.
    Ivanovska, S.
    Karaivanova, A.
    Simchev, T.
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 258 - 265
  • [4] Quasi-Monte Carlo hybrid particle filters
    Daum, F
    Huang, J
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2004, 2004, 5428 : 497 - 508
  • [5] Convergence of sequential quasi-Monte Carlo smoothing algorithms
    Gerber, Mathieu
    Chopin, Nicolas
    BERNOULLI, 2017, 23 (4B) : 2951 - 2987
  • [6] On global sensitivity analysis of quasi-Monte Carlo algorithms
    Sobol, I. M.
    Kucherenko, S. S.
    MONTE CARLO METHODS AND APPLICATIONS, 2005, 11 (01): : 83 - 92
  • [7] Quasi-Monte Carlo Algorithms (Not Only) for Graphics Software
    Keller, Alexander
    Waechter, Carsten
    Binder, Nikolaus
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 373 - 391
  • [8] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [9] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [10] Quasi-Monte Carlo algorithms for unbounded, weighted integration problems
    Hartinger, E
    Kainhofer, RF
    Tichy, RF
    JOURNAL OF COMPLEXITY, 2004, 20 (05) : 654 - 668