Charge Mobility and Recombination Mechanisms in Tellurium van der Waals Solid

被引:17
|
作者
Bhaskar, Prashant [1 ]
Achtstein, Alexander W. [1 ,2 ]
Vermeulen, Martien J. W. [1 ]
Siebbeles, Laurens D. A. [1 ]
机构
[1] Delft Univ Technol, Optoelect Mat Sect, Dept Chem Engn, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Tech Univ Berlin, Inst Opt & Atomare Phys, Str 17 Juni 135, D-10623 Berlin, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 01期
关键词
OPTICAL-PROPERTIES; TRANSPORT; CONDUCTIVITY; SELENIUM; KINETICS; HOLES;
D O I
10.1021/acs.jpcc.8b09665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Trigonal tellurium is a small band gap elemental semiconductor consisting of van der Waals bound one-dimensional helical chains of tellurium atoms. We study the temperature dependence of the charge carrier mobility and recombination pathways in bulk tellurium. Electrons and holes are generated by irradiation of the sample with 3 MeV electrons and detected by time-resolved microwave conductivity measurements. A theoretical model is used to explain the experimental observations for different charge densities and temperatures. Our analysis reveals a high room temperature mobility of 190 +/- 20 cm(2) V-1 s(-1). The mobility is thermally deactivated, suggesting a band-like transport mechanism. According to our analysis, the charges predominantly recombine via radiative recombination with a radiative yield close to 98%, even at room temperature. The remaining charges recombine by either trap-assisted (Shocldey-Read-Hall) recombination or undergo trapping to deep traps. The high mobility, near-unity radiative yield, and possibility of large-scale production of atomic wires by liquid exfoliation make Te of high potential for next-generation nanoelectronic and optoelectronic applications, including far-infrared detectors and lasers.
引用
收藏
页码:841 / 847
页数:7
相关论文
共 50 条
  • [41] Van der Waals superlattices
    Ren, Huaying
    Wan, Zhong
    Duan, Xiangfeng
    NATIONAL SCIENCE REVIEW, 2022, 9 (05)
  • [42] Van der Waals Electrides
    Zhou, Jun
    You, Jing-Yang
    Zhao, Yi-Ming
    Feng, Yuan Ping
    Shen, Lei
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (17) : 2572 - 2581
  • [43] van der Waals metamaterials
    Dorrell, William
    Pirie, Harris
    Gardezi, S. Minhal
    Drucker, Nathan C.
    Hoffman, Jennifer E.
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [44] The van der Waals' formula
    Fuchs, K
    ANNALEN DER PHYSIK, 1907, 23 (07) : 385 - 391
  • [45] van der Waals revisited
    Baerwinkel, Klaus
    Schnack, Juergen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (18) : 4581 - 4588
  • [46] Enhancement of Carrier Mobility in Multilayer InSe Transistors by van der Waals Integration
    Li, Zhiwei
    Liu, Jidong
    Ou, Haohui
    Hu, Yutao
    Zhu, Jiaqi
    Huang, Jiarui
    Liu, Haolin
    Tu, Yudi
    Qi, Dianyu
    Hao, Qiaoyan
    Zhang, Wenjing
    NANOMATERIALS, 2024, 14 (04)
  • [47] Indentation of solid membranes on rigid substrates with van der Waals attraction
    Davidovitch, Benny
    Guinea, Francisco
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [48] From van der Waals to VTPR: The systematic improvement of the van der Waals equation of state
    Schmid, Bastian
    Gmehling, Juergen
    JOURNAL OF SUPERCRITICAL FLUIDS, 2010, 55 (02): : 438 - 447
  • [49] Effects of Van der Waals' interaction and charge donation on photoinduced charge separated state.
    Sanchez, JC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U461 - U461
  • [50] Emergence of a Non-Van der Waals Magnetic Phase in a Van der Waals Ferromagnet
    Das, Bikash
    Ghosh, Subrata
    Sengupta, Shamashis
    Auban-Senzier, Pascale
    Monteverde, Miguel
    Dalui, Tamal Kumar
    Kundu, Tanima
    Saha, Rafikul Ali
    Maity, Sujan
    Paramanik, Rahul
    Ghosh, Anudeepa
    Palit, Mainak
    Bhattacharjee, Jayanta K.
    Mondal, Rajib
    Datta, Subhadeep
    SMALL, 2023, 19 (39)