Charge Mobility and Recombination Mechanisms in Tellurium van der Waals Solid

被引:17
|
作者
Bhaskar, Prashant [1 ]
Achtstein, Alexander W. [1 ,2 ]
Vermeulen, Martien J. W. [1 ]
Siebbeles, Laurens D. A. [1 ]
机构
[1] Delft Univ Technol, Optoelect Mat Sect, Dept Chem Engn, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Tech Univ Berlin, Inst Opt & Atomare Phys, Str 17 Juni 135, D-10623 Berlin, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 01期
关键词
OPTICAL-PROPERTIES; TRANSPORT; CONDUCTIVITY; SELENIUM; KINETICS; HOLES;
D O I
10.1021/acs.jpcc.8b09665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Trigonal tellurium is a small band gap elemental semiconductor consisting of van der Waals bound one-dimensional helical chains of tellurium atoms. We study the temperature dependence of the charge carrier mobility and recombination pathways in bulk tellurium. Electrons and holes are generated by irradiation of the sample with 3 MeV electrons and detected by time-resolved microwave conductivity measurements. A theoretical model is used to explain the experimental observations for different charge densities and temperatures. Our analysis reveals a high room temperature mobility of 190 +/- 20 cm(2) V-1 s(-1). The mobility is thermally deactivated, suggesting a band-like transport mechanism. According to our analysis, the charges predominantly recombine via radiative recombination with a radiative yield close to 98%, even at room temperature. The remaining charges recombine by either trap-assisted (Shocldey-Read-Hall) recombination or undergo trapping to deep traps. The high mobility, near-unity radiative yield, and possibility of large-scale production of atomic wires by liquid exfoliation make Te of high potential for next-generation nanoelectronic and optoelectronic applications, including far-infrared detectors and lasers.
引用
收藏
页码:841 / 847
页数:7
相关论文
共 50 条
  • [21] Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures
    Krause, R.
    Aeschlimann, S.
    Chavez-Cervantes, M.
    Perea-Causin, R.
    Brem, S.
    Malic, E.
    Forti, S.
    Fabbri, F.
    Coletti, C.
    Gierz, I
    PHYSICAL REVIEW LETTERS, 2021, 127 (27)
  • [22] Solvation of charge in aromatic/noble gas Van der Waals clusters
    Douin, S
    Piccirillo, S
    Brechignac, P
    CHEMICAL PHYSICS LETTERS, 1997, 273 (5-6) : 389 - 396
  • [23] Control of spin-charge conversion in van der Waals heterostructures
    Galceran, Regina
    Tian, Bo
    Li, Junzhu
    Bonell, Frederic
    Jamet, Matthieu
    Vergnaud, Celine
    Marty, Alain
    Garcia, Jose H.
    Sierra, Juan F.
    Costache, Marius, V
    Roche, Stephan
    Valenzuela, Sergio O.
    Manchon, Aurelien
    Zhang, Xixiang
    Schwingenschlogl, Udo
    APL MATERIALS, 2021, 9 (10):
  • [24] Mechanical response of van der Waals and charge coupled carbon nanotubes
    Mokhalingam, Aningi
    Dalal, Indranil S.
    Gupta, Shakti S.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2024, 32 (03)
  • [25] Wavelike charge density fluctuations and van der Waals interactions at the nanoscale
    Ambrosetti, Alberto
    Ferri, Nicola
    DiStasio, Robert A., Jr.
    Tkatchenko, Alexandre
    SCIENCE, 2016, 351 (6278) : 1171 - 1176
  • [26] Van der Waals quintessence
    Capozziello, S
    Cardone, VF
    Carloni, S
    Troisi, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 307 - 308
  • [27] JAN VAN DER WAALS
    Fuhring, Peter
    PRINT QUARTERLY, 2009, 26 (03) : 300 - 302
  • [28] On the Working Mechanisms of Molecules-Based Van der Waals Dielectrics
    Li, Pengyu
    Zhao, Yinghe
    Li, Huiqiao
    Zhai, Tianyou
    SMALL, 2023, 19 (40)
  • [29] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [30] Van der Waals quintessence
    Capozziello, S
    De Martino, S
    Falanga, M
    PHYSICS LETTERS A, 2002, 299 (5-6) : 494 - 498