Tor as a module over an exterior algebra

被引:1
|
作者
Eisenbud, David [1 ]
Peeva, Irena [2 ]
Schreyer, Frank-Olaf [3 ]
机构
[1] Univ Calif Berkeley, Math Dept, Berkeley, CA 94720 USA
[2] Cornell Univ, Math Dept, Ithaca, NY 14853 USA
[3] Univ Saarland, Fachbereich Math, Campus E2 4, D-66123 Saarbrucken, Germany
基金
美国国家科学基金会;
关键词
Free resolutions; exterior algebras; Tor; Eisenbud operators; HOMOLOGICAL ALGEBRA; POINCARE-SERIES; INTERSECTION; RESOLUTIONS; RIGIDITY;
D O I
10.4171/JEMS/853
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a regular local ring with residue field k and let M be a finitely generated S-module. Suppose that f(1), . . . , f(c) is an element of S is a regular sequence that annihilates M, and let E be an exterior algebra over k generated by c elements. The homotopies for the f(i) on a free resolution of M induce a natural structure of graded E-module on Tor(S) (M, k). In the case where M is a high syzygy over the complete intersection R:= S/(f(1), ..., f(c) ) we describe this E-module structure in detail, including its minimal free resolution over E. Turning to Ext(R) (M, k) we show that, when M is a high syzygy over R, the minimal free resolution of Ext(R) (M, k) as a module over the ring of CI operators is the Bernstein-Gel'fand- Gel'fand dual of the E-module Tor(S) (M, k). For the proof we introduce higher CI operators, and give a construction of a (generally nonminimal) resolution of M over S starting from a resolution of M over R and its higher CI operators.
引用
收藏
页码:873 / 896
页数:24
相关论文
共 50 条
  • [41] EXTERIOR ALGEBRA AND COMPLEX STRUCTURE
    PAPACOSTAS, GC
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1984, 70 (10): : 611 - 616
  • [42] Dimension independence in exterior algebra
    Hawrylycz, M.
    Proceedings of the National Academy of Sciences of the United States of America, 92 (06):
  • [43] Exterior algebra of a Banach space
    Ramasinghe, W.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (03): : 291 - 324
  • [44] Quasisymmetric harmonics of the exterior algebra
    Bergeron, Nantel
    Chan, Kelvin
    Soltani, Farhad
    Zabrocki, Mike
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (03): : 997 - 1013
  • [45] REVLEX IDEALS IN THE EXTERIOR ALGEBRA
    Crupi, Marilena
    Ferro, Carmela
    MATHEMATICAL REPORTS, 2013, 15 (03): : 193 - 201
  • [46] EXTERIOR ALGEBRA AND PROJECTIONS OF POLYTOPES
    FILLIMAN, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (03) : 305 - 322
  • [47] DIMENSION INDEPENDENCE IN EXTERIOR ALGEBRA
    HAWRYLYCZ, M
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (06) : 2323 - 2327
  • [48] Lexsegment ideals in the exterior algebra
    Bonanzinga, V
    GEOMETRIC AND COMBINATORIAL ASPECTS OF COMMUNTATIVE ALGEBRA, 2001, 217 : 43 - 56
  • [49] MODULE ALGEBRA
    BERGSTRA, JA
    HEERING, J
    KLINT, P
    JOURNAL OF THE ACM, 1990, 37 (02) : 335 - 372
  • [50] ON A GEOMETRICAL THEOREM IN EXTERIOR ALGEBRA
    PEDOE, D
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (06): : 1187 - &