Quasisymmetric harmonics of the exterior algebra

被引:0
|
作者
Bergeron, Nantel [1 ]
Chan, Kelvin [1 ]
Soltani, Farhad [1 ]
Zabrocki, Mike [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
05E05; 16W55; Quasisymmetric polynomials; fermionic variables; exterior algebra; Ballot sequences; polynomial harmonics; POLYNOMIALS; CHARACTER;
D O I
10.4153/S0008439523000024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the ring of quasisymmetric polynomials in n anticommuting (fermionic) variables. Let Rn denote the polynomials in n anticommuting variables. The main results of this paper show the following interesting facts about quasisymmetric polynomials in anticommuting variables: (1) The quasisymmetric polynomials in Rn form a commutative sub-algebra of Rn. (2) There is a basis of the quotient of Rn by the ideal In generated by the quasisymmetric polynomials in Rn that is indexed by ballot sequences. The Hilbert series of the quotient is given by HilbRn/In(q) = Sigma k=0 f(n-k,k)} qk where f(n-k,k) is the number of standard tableaux of shape (n-k,k). (3) There is a basis of the ideal generated by quasisymmetric polynomials that is indexed by sequences that break the ballot condition
引用
收藏
页码:997 / 1013
页数:17
相关论文
共 50 条
  • [1] Exterior John Domains and Quasisymmetric Mappings
    Liu, Jinsong
    Xuan, Yi
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, 24 (01) : 7 - 25
  • [2] Exterior John Domains and Quasisymmetric Mappings
    Jinsong Liu
    Yi Xuan
    Computational Methods and Function Theory, 2024, 24 : 7 - 25
  • [3] Rigidity for the Hopf algebra of quasisymmetric functions
    Jia, Wanwan
    Wang, Zhengpan
    Yu, Houyi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [4] HOMOMORPHISM IN EXTERIOR ALGEBRA
    KOSTANT, B
    NOVIKOFF, A
    CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (01): : 166 - &
  • [5] Hochschild cohomology of Beilinson algebra of exterior algebra
    Xu YunGe
    Zhang Chao
    Ma XiaoJing
    Hu QingFeng
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (06) : 1153 - 1170
  • [6] Hochschild cohomology of Beilinson algebra of exterior algebra
    YunGe Xu
    Chao Zhang
    XiaoJing Ma
    QingFeng Hu
    Science China Mathematics, 2012, 55 : 1153 - 1170
  • [7] Hochschild cohomology of Beilinson algebra of exterior algebra
    XU YunGe 1
    2 Academy of Mathematics and System Science
    ScienceChina(Mathematics), 2012, 55 (06) : 1153 - 1170
  • [8] Toward a polynomial basis of the algebra of peak quasisymmetric functions
    Yunnan Li
    Journal of Algebraic Combinatorics, 2016, 44 : 931 - 946
  • [9] Toward a polynomial basis of the algebra of peak quasisymmetric functions
    Li, Yunnan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (04) : 931 - 946
  • [10] Hopf algebra structure of symmetric and quasisymmetric functions in superspace
    Fishel, Susanna
    Lapointe, Luc
    Elena Pinto, Maria
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 166 : 144 - 170