Quasisymmetric harmonics of the exterior algebra

被引:0
|
作者
Bergeron, Nantel [1 ]
Chan, Kelvin [1 ]
Soltani, Farhad [1 ]
Zabrocki, Mike [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2023年 / 66卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
05E05; 16W55; Quasisymmetric polynomials; fermionic variables; exterior algebra; Ballot sequences; polynomial harmonics; POLYNOMIALS; CHARACTER;
D O I
10.4153/S0008439523000024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the ring of quasisymmetric polynomials in n anticommuting (fermionic) variables. Let Rn denote the polynomials in n anticommuting variables. The main results of this paper show the following interesting facts about quasisymmetric polynomials in anticommuting variables: (1) The quasisymmetric polynomials in Rn form a commutative sub-algebra of Rn. (2) There is a basis of the quotient of Rn by the ideal In generated by the quasisymmetric polynomials in Rn that is indexed by ballot sequences. The Hilbert series of the quotient is given by HilbRn/In(q) = Sigma k=0 f(n-k,k)} qk where f(n-k,k) is the number of standard tableaux of shape (n-k,k). (3) There is a basis of the ideal generated by quasisymmetric polynomials that is indexed by sequences that break the ballot condition
引用
收藏
页码:997 / 1013
页数:17
相关论文
共 50 条
  • [31] Weakly saturated hypergraphs and exterior algebra
    Pikhurko, O
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (05): : 435 - 451
  • [32] ELEMENT OF AREA VIA EXTERIOR ALGEBRA
    GREENBERG, MJ
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (04): : 274 - 275
  • [33] Relative invariants: an exterior algebra.
    Beck, Vincent
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (10) : 727 - 732
  • [34] Tor as a module over an exterior algebra
    Eisenbud, David
    Peeva, Irena
    Schreyer, Frank-Olaf
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (03) : 873 - 896
  • [35] Superconformal quantum mechanics and the exterior algebra
    Singleton, Andrew
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [36] THE POINCARE MAP IN MIXED EXTERIOR ALGEBRA
    VANSTONE, JR
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (02): : 129 - 136
  • [37] On generic principal ideals in the exterior algebra
    Lundqvist, Samuel
    Nicklasson, Lisa
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (06) : 2615 - 2634
  • [38] Deformations of the exterior algebra of differential forms
    Molinuevo, Ariel
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2016, 57 (04): : 771 - 787
  • [39] A CANONICAL DECOMPOSITION IN MIXED EXTERIOR ALGEBRA
    VANSTONE, JR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (02): : 361 - 373
  • [40] Superconformal quantum mechanics and the exterior algebra
    Andrew Singleton
    Journal of High Energy Physics, 2014