Quasisymmetric harmonics of the exterior algebra

被引:0
|
作者
Bergeron, Nantel [1 ]
Chan, Kelvin [1 ]
Soltani, Farhad [1 ]
Zabrocki, Mike [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2023年 / 66卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
05E05; 16W55; Quasisymmetric polynomials; fermionic variables; exterior algebra; Ballot sequences; polynomial harmonics; POLYNOMIALS; CHARACTER;
D O I
10.4153/S0008439523000024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the ring of quasisymmetric polynomials in n anticommuting (fermionic) variables. Let Rn denote the polynomials in n anticommuting variables. The main results of this paper show the following interesting facts about quasisymmetric polynomials in anticommuting variables: (1) The quasisymmetric polynomials in Rn form a commutative sub-algebra of Rn. (2) There is a basis of the quotient of Rn by the ideal In generated by the quasisymmetric polynomials in Rn that is indexed by ballot sequences. The Hilbert series of the quotient is given by HilbRn/In(q) = Sigma k=0 f(n-k,k)} qk where f(n-k,k) is the number of standard tableaux of shape (n-k,k). (3) There is a basis of the ideal generated by quasisymmetric polynomials that is indexed by sequences that break the ballot condition
引用
收藏
页码:997 / 1013
页数:17
相关论文
共 50 条
  • [21] ON A GEOMETRICAL THEOREM IN EXTERIOR ALGEBRA
    PEDOE, D
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (06): : 1187 - &
  • [22] On special covariants in the exterior algebra of a simple Lie algebra
    De Concini, Corrado
    Frajria, Pierluigi Moesneder
    Papi, Paolo
    Procesi, Claudio
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2014, 25 (03) : 331 - 344
  • [23] On Some Subspaces of the Exterior Algebra of a Simple Lie Algebra
    Charbonnel, Jean-Yves
    ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (03) : 725 - 746
  • [24] On Some Subspaces of the Exterior Algebra of a Simple Lie Algebra
    Jean-Yves Charbonnel
    Algebras and Representation Theory, 2022, 25 : 725 - 746
  • [25] Dual Creation Operators and a Dendriform Algebra Structure on the Quasisymmetric Functions
    Grinberg, Darij
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (01): : 21 - 53
  • [26] DIFFERENTIAL OPERATORS IN EXTERIOR ALGEBRAS AND EXTERIOR DIFFERENTIAL FORMS OF AN ALGEBRA
    ROBY, N
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1977, 49 (01): : 9 - 14
  • [27] Modules of the 0-Hecke algebra and quasisymmetric Schur functions
    Tewari, Vasu V.
    van Willigenburg, Stephanie J.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1025 - 1065
  • [28] Free polynomial generators for the Hopf algebra QSym of quasisymmetric functions
    Ditters, EJ
    Scholtens, ACJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 144 (03) : 213 - 227
  • [29] The adjoint representation inside the exterior algebra of a simple Lie algebra
    De Concini, Corrado
    Papi, Paolo
    Procesi, Claudio
    ADVANCES IN MATHEMATICS, 2015, 280 : 21 - 46
  • [30] Annihilators of principal ideals in the exterior algebra
    Koc, Cemal
    Esin, Songuel
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 1019 - 1035