Diagnostic performance of automated plasma amyloid-β assays combined with pre-analytical immunoprecipitation

被引:7
|
作者
Klafki, Hans-W [1 ]
Vogelgsang, Jonathan [1 ,2 ]
Manuilova, Ekaterina [3 ]
Bauer, Chris [4 ]
Jethwa, Alexander [3 ]
Esselmann, Hermann [1 ]
Jahn-Brodmann, Anke [1 ]
Osterloh, Dirk [5 ]
Lachmann, Ingolf [5 ]
Breitling, Benedict [1 ]
Rauter, Carolin [1 ]
Hansen, Niels [1 ]
Bouter, Caroline [6 ]
Palme, Stefan [3 ]
Schuchhardt, Johannes [4 ]
Wiltfang, Jens [1 ,7 ,8 ]
机构
[1] Georg August Univ, Univ Med Ctr Goettingen UMG, Dept Psychiat & Psychotherapy, Von Siebold Str 5, D-37075 Gottingen, Germany
[2] McLean Hosp, Harvard Med Sch, Dept Psychiat, Translat Neurosci Lab, Belmont, MA 02478 USA
[3] Roche Diagnost GmbH, D-82377 Penzberg, Germany
[4] MicroDiscovery GmbH, Marienburger Str 1, D-10405 Berlin, Germany
[5] Roboscreen GmbH, Hohmannstr 7, D-04129 Leipzig, Germany
[6] Georg August Univ, Univ Med Ctr Goettingen UMG, Dept Nucl Med, D-37075 Gottingen, Germany
[7] German Ctr Neurodegenerat Dis DZNE, D-37075 Gottingen, Germany
[8] Univ Aveiro, Inst Biomed iBiMED, Dept Med Sci, Neurosci & Signaling Grp, P-3810193 Aveiro, Portugal
关键词
Alzheimer's disease; Biomarker assay; Plasma Amyloid-beta 42/40; Immunoprecipitation; Pre-analytical sample workup; ALZHEIMERS-DISEASE; BIOMARKERS; PROTEIN;
D O I
10.1186/s13195-022-01071-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Measurements of the amyloid-beta (A beta) 42/40 ratio in blood plasma may support the early diagnosis of Alzheimer's disease and aid in the selection of suitable participants in clinical trials. Here, we compared the diagnostic performance of fully automated prototype plasma A beta 42/40 assays with and without pre-analytical sample workup by immunoprecipitation. Methods: A pre-selected clinical sample comprising 42 subjects with normal and 38 subjects with low cerebrospinal fluid (CSF) A beta 42/40 ratios was studied. The plasma A beta 42/40 ratios were determined with fully automated prototype Elecsys (R) immunoassays (Roche Diagnostics GmbH, Penzberg, Germany) by direct measurements in EDTA plasma or after pre-analytical A beta immunoprecipitation. The diagnostic performance for the detection of abnormal CSF A beta 42/40 was analyzed by receiver operating characteristic (ROC) analysis. In an additional post hoc analysis, a biomarker-supported clinical diagnosis was used as a second endpoint. Results: Pre-analytical immunoprecipitation resulted in a significant increase in the area under the ROC curve (AUC) from 0.73 to 0.88 (p = 0.01547) for identifying subjects with abnormal CSF A beta 42/40. A similar improvement in the diagnostic performance by pre-analytical immunoprecipitation was also observed when a biomarker-supported clinical diagnosis was used as a second endpoint (AUC increase from 0.77 to 0.92, p = 0.01576). Conclusions: Our preliminary observations indicate that pre-analytical A beta immunoprecipitation can improve the diagnostic performance of plasma A beta assays for detecting brain amyloid pathology. The findings may aid in the further development of blood-based immunoassays for Alzheimer's disease ultimately suitable for screening and routine use.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A multicenter evaluation of the PCA3 molecular urine test: Pre-analytical effects, analytical performance, and diagnostic accuracy
    Sokoll, Lori J.
    Ellis, William
    Lange, Paul
    Noteboom, Jennifer
    Elliott, Debra J.
    Deras, Ina L.
    Blase, Amy
    Koo, Seongjoon
    Sarno, Mark
    Rittenhouse, Harry
    Groskopf, Jack
    Vessella, Robert L.
    CLINICA CHIMICA ACTA, 2008, 389 (1-2) : 1 - 6
  • [22] Effect of different pre-analytical conditions on plasma lactate concentration
    Rako, Ivana
    Mlinaric, Ana
    Dozelencic, Monika
    Juros, Gordana Fressl
    Rogic, Dunja
    BIOCHEMIA MEDICA, 2018, 28 (02)
  • [23] Thrombin generation: the effect of pre-analytical variables on the calibrated automated thrombograrn
    Ryland, J. K.
    Lawrie, A. S.
    Machin, S. J.
    Mackie, I. J.
    BRITISH JOURNAL OF HAEMATOLOGY, 2008, 141 : 79 - 79
  • [24] Controlling pre-analytical process in human serum/plasma metabolomics
    Chen, Deying
    Zhao, Shuang
    Li, Lanjuan
    Li, Liang
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 169
  • [25] Pre-analytical and analytical aspects affecting clinical reliability of plasma glucose results
    Pasqualetti, Sara
    Braga, Federica
    Panteghini, Mauro
    CLINICAL BIOCHEMISTRY, 2017, 50 (10-11) : 587 - 594
  • [26] Pre-analytical stability of the plasma proteomes based on the storage temperature
    Pasella, Sara
    Baralla, Angela
    Canu, Elisabetta
    Pinna, Sara
    Vaupel, James
    Deiana, Marta
    Franceschi, Claudio
    Baggio, Giovannella
    Zinellu, Angelo
    Sotgia, Salvatore
    Castaldo, Giuseppe
    Carru, Ciriaco
    Deiana, Luca
    PROTEOME SCIENCE, 2013, 11
  • [27] Pre-analytical stability of the plasma proteomes based on the storage temperature
    Sara Pasella
    Angela Baralla
    Elisabetta Canu
    Sara Pinna
    James Vaupel
    Marta Deiana
    Claudio Franceschi
    Giovannella Baggio
    Angelo Zinellu
    Salvatore Sotgia
    Giuseppe Castaldo
    Ciriaco Carru
    Luca Deiana
    Proteome Science, 11
  • [28] Pre-analytical stability of sorbitol dehydrogenase in equine heparinized plasma
    Fouch, N.
    Oesch, S.
    Gerber, V.
    Richter, H.
    Howard, J.
    Peters, L. M.
    VETERINARY JOURNAL, 2021, 274
  • [29] Evaluation of pre-analytical factors affecting plasma DNA analysis
    Markus, Havel
    Contente-Cuomo, Tania
    Farooq, Maria
    Liang, Winnie S.
    Borad, Mitesh J.
    Sivakumar, Shivan
    Gollinss, Simon
    Tran, Nhan L.
    Dhruv, Harshil D.
    Berens, Michael E.
    Bryce, Alan
    Sekulic, Aleksandar
    Ribas, Antoni
    Trent, Jeffrey M.
    LoRusso, Patricia M.
    Murtaza, Muhammed
    SCIENTIFIC REPORTS, 2018, 8
  • [30] Evaluation of pre-analytical factors affecting plasma DNA analysis
    Havell Markus
    Tania Contente-Cuomo
    Maria Farooq
    Winnie S. Liang
    Mitesh J. Borad
    Shivan Sivakumar
    Simon Gollins
    Nhan L. Tran
    Harshil D. Dhruv
    Michael E. Berens
    Alan Bryce
    Aleksandar Sekulic
    Antoni Ribas
    Jeffrey M. Trent
    Patricia M. LoRusso
    Muhammed Murtaza
    Scientific Reports, 8