Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method

被引:8
|
作者
Nagai, Kazuki [1 ]
Anada, Masato [1 ]
Nakanishi-Ohno, Yoshinori [2 ,3 ,4 ]
Okada, Masato [5 ]
Wakabayashi, Yusuke [6 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Univ Tokyo, Komaba Inst Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
surface diffraction; Bayesian inference; Monte Carlo; oxide films; epitaxial films;
D O I
10.1107/S1600576720001314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exchange Monte Carlo (MC) method is implemented in a surface structure refinement software using Bayesian inference. The MC calculation successfully reproduces crystal truncation rod intensity profiles from perovskite oxide ultrathin films, which involves about 60 structure parameters, starting from a simple model structure in which the ultrathin film and substrate surface have an atomic arrangement identical to the substrate bulk crystal. This shows great tolerance of the initial model in the surface structure search. The MC software is provided on the web. One of the advantages of using the MC method is the precise estimation of uncertainty of the obtained parameters. However, the parameter uncertainty is largely underestimated when one assumes that the diffraction measurements at each scattering vector are independent. The underestimation is caused by the correlation of experimental error. A means of estimation of uncertainty based on the effective number of observations is demonstrated.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [1] Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method (vol 53, pg 387, 2020)
    Nagai, Kazuki
    Anada, Masato
    Nakanishi-Ohno, Yoshinori
    Okada, Masato
    Wakabayashi, Yusuke
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1023 - 1023
  • [2] Uncertainty estimation and Monte Carlo simulation method
    Papadopoulos, CE
    Yeung, H
    FLOW MEASUREMENT AND INSTRUMENTATION, 2001, 12 (04) : 291 - 298
  • [3] Modeling of the surface-to-surface radiation exchange using a Monte Carlo method
    Frank, A.
    Heidemann, W.
    Spindler, K.
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745
  • [4] Uncertainty Estimation in Luminous Flux Measured with Goniophotometers using Monte Carlo Method
    Romero, Javier A. R.
    Caro-Ruiz, Claudia
    2020 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D LA), 2020,
  • [5] Dynamic measurements and uncertainty estimation of clinical thermometers using Monte Carlo method
    Ogorevc, Jaka
    Bojkovski, Jovan
    Pusnik, Igor
    Drnovsek, Janko
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (09)
  • [6] Uncertainty estimation using Monte-Carlo method constrained by correlations of the data
    Mitutoyo Corp., Mitutoyo Tsukuba Lab., Kamiyokoba 430-1, Tsukuba, Ibaraki, 305-0854, Japan
    不详
    Key Eng Mat, 2008, (587-590): : 587 - 590
  • [7] Analysis of exchange ratio for exchange Monte Carlo method
    Nagata, Kenji
    Watanabe, Sumio
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 434 - +
  • [8] Uncertainty analysis using Monte Carlo method in the measurement of phase by ESPI
    Morales, Marcelino Anguiano
    Martinez, Amalia
    Rayas, J. A.
    Cordero, Raul R.
    RIAO/OPTILAS 2007, 2008, 992 : 1005 - +
  • [9] Uncertainty Analysis of ANN Based Spectral Analysis Using Monte Carlo Method
    Ramon Salinas, Jose
    Garcia-Lagos, Francisco
    Diaz de Aguilar, Javier
    Joya, Gonzalo
    Sandoval, Francisco
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 269 - 280
  • [10] Robust Uncertainty Quantification Using Conformalised Monte Carlo Prediction
    Bethell, Daniel
    Gerasimou, Simos
    Calinescu, Radu
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 19, 2024, : 20939 - 20948